39,990 research outputs found

    The Complexity of Reliable and Secure Distributed Transactions

    Get PDF
    The use of transactions in distributed systems dates back to the 70's. The last decade has also seen the proliferation of transactional systems. In the existing transactional systems, many protocols employ a centralized approach in executing a distributed transaction where one single process coordinates the participants of a transaction. The centralized approach is usually straightforward and efficient in the failure-free setting, yet the coordinator then turns to be a single point of failure, undermining reliability/security in the failure-prone setting, or even be a performance bottleneck in practice. In this dissertation, we explore the complexity of decentralized solutions for reliable and secure distributed transactions, which do not use a distinguished coordinator or use the coordinator as little as possible. We show that for some problems in reliable distributed transactions, there are decentralized solutions that perform as efficiently as the classical centralized one, while for some others, we determine the complexity limitations by proving lower and upper bounds to have a better understanding of the state-of-the-art solutions. We first study the complexity on two aspects of reliable transactions: atomicity and consistency. More specifically, we do a systematic study on the time and message complexity of non-blocking atomic commit of a distributed transaction, and investigate intrinsic limitations of causally consistent transactions. Our study of distributed transaction commit focuses on the complexity of the most frequent executions in practice, i.e., failure-free, and willing to commit. Through our systematic study, we close many open questions like the complexity of synchronous non-blocking atomic commit. We also present an effective protocol which solves what we call indulgent atomic commit that tolerates practical distributed database systems which are synchronous "most of the time", and can perform as efficiently as the two-phase commit protocol widely used in distributed database systems. Our investigation of causal transactions focuses on the limitations of read-only transactions, which are considered the most frequent in practice. We consider "fast" read-only transactions where operations are executed within one round-trip message exchange between a client seeking an object and the server storing it (in which no process can be a coordinator). We show two impossibility results regarding "fast" read-only transactions. By our impossibility results, when read-only transactions are "fast", they have to be "visible", i.e., they induce inherent updates on the servers. We also present a "fast" read-only transaction protocol that is "visible" as an upper bound on the complexity of inherent updates. We then study the complexity of secure transactions in the model of secure multiparty computation: even in the face of malicious parties, no party obtains the computation result unless all other parties obtain the same result. As it is impossible to achieve without any trusted party, we focus on optimism where if all parties are honest, they can obtain the computation result without resorting to a trusted third party, and the complexity of every optimistic execution where all parties are honest. We prove a tight lower bound on the message complexity by relating the number of messages to the length of the permutation sequence in combinatorics, a necessary pattern for messages in every optimistic execution

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Fast Method for the Iron Losses Prediction in Inverter Fed Induction Motors

    Get PDF
    In this paper an easy method for the iron loss prediction in PWM inverter fed induction motors is presented. The method was initially proposed and validated for the prediction of the iron losses in non-oriented soft magnetic material with PWM supply. Starting from the iron losses measured with sinusoidal supply and the PWM waveform characteristics, a fast and reliable prediction of the iron losses in the motor can be obtained too. The method requires the separation of the iron losses in the hysteresis and eddy current components with sinusoidal supply, plus the average rectified and RMS values of the applied PWM voltage. The proposed method has been proved on an induction motor prototype able to provide a good accuracy in the iron losses measurement. The comparison between the measured and predicted iron losses with PWM supply have shown an excellent agreement with an error lower then the 5%, confirming the method validit
    • …
    corecore