
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Y. Le Boudec, président du jury
Prof. R. Guerraoui, directeur de thèse

Prof. G. Alonso, rapporteur
Prof. R. Oshman, rapporteuse

Prof. C. Koch, rapporteur

The Complexity of Reliable and
Secure Distributed Transactions

THÈSE NO 8761 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 6 SEPTEMBRE 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Jingjing WANG

A journey of a thousand miles

must begin with a single step.

— Laozi

To my parents,

Mingfang Xie and Hongyu Wang

Acknowledgements
First and foremost, I would like to thank my advisor, Rachid Guerraoui for his constant support

and guidance. I do not only receive guidance from him on technical work but also learn a lot

of soft skills including presentation skills, marketing skills and tenacity. More importantly,

Rachid has taught me to be optimistic. Our work is technically challenging and practically

interesting. We are confident in our work and thus all we need to do is to present properly our

solid work and eventually people will be interested in reading it.

I must also thank the committee members for my private Ph.D. defense, namely Professor Le

Boudec Jean-Yves for being the president of my Ph.D. committee, Professor Koch Christoph

for being the internal examiner and Professor Alonso Gustavo and Professor Oshman Rotem

for being my external examiners. I would like to thank for their time and insights that help

improve this dissertation work.

I am also grateful to my colleagues. To Rhicheek Patra for being always available for discussion

for our project on recommender systems and to Mahammad Valiyev for the same project. To

Antoine Rault and Davide Frey for their time and efforts in our collaboration on private KNN

computation even when we were geographically separated. To Diego Didona for his insights

from the perspective of practitioners for our hard work on causal transactions. I would like

also to thank Professor Anne-Marie Kermarrec, Professor François Taïani and Professor Willy

Zwaenepoel for their patience, advice, and insightful feedback for my research projects, which

I learned from greatly. Our previous secretary of the laboratory, Kristine Verhamme and our

current secretary France Faille also helped me a lot on the administrative steps to attending

conferences and to going through my Ph.D. journey etc., while our system administrator

Fabien Salvi helped me out in installing and configuring necessary software for my research.

Last but not least, I would like to especially thank my family and my friends. Without my

friends in Switzerland, back in China and even far away in the United States who made my

Ph.D. days an enjoyable experience, I could not possibly survive my Ph.D. journey. Moreover,

my education (i.e., diploma, M.Sc., and Ph.D.) to date has lasted for 12 years. I could not

possibly be here and sustain all the pressure (e.g., of the financial expenses) without the help

and support of my family. I want to deeply thank my parents for being there for me throughout

all these years.

Lausanne, 2018 Jingjing Wang

v

Preface
This dissertation concerns the PhD work I did under the supervision of Prof. Rachid Guerraoui

at the School of Computer and Communication Sciences, EPFL, from 2013 to 2018. The main

results of this dissertation appeared originally in the following publications (author names are

in alphabetical order).

1. Rachid Guerraoui, Jingjing Wang. “Optimal Fair Computation”. Proceedings of the 30th

International Symposium on Distributed Computing (DISC). Springer, 2016. (Chapter 4)

2. Rachid Guerraoui, JingjingWang. “How Fast can a Distributed Transaction Commit?”.

Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems (SIGMOD/PODS). ACM, 2017. (Chapter 2)

3. Diego Didona, Rachid Guerraoui, Jingjing Wang, Willy Zwaenepoel. “Distributed Trans-

actions: Dissecting the Nightmare”. Under submission. (Chapter 3)

Besides the work presented in this thesis, I also worked on the following publications (author

names are in alphabetical order).

1. Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Antoine Rault, François Taïani,

Jingjing Wang. “Hide & Share: Landmark-based Similarity for Private KNN Computation”.

Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN). IEEE, 2015.

2. Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, Mahammad Valiyev, Jingjing

Wang. “I know nothing about you but here is what you might like”. Proceedings of the

47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). IEEE, 2017.

3. Rachid Guerraoui, Jingjing Wang. “On the Unfairness of Blockchain”. Proceedings of the

6th International Conference on Networked Systems (NETYS). Springer, 2018.

4. Diego Didona, Rachid Guerraoui, Jingjing Wang, Willy Zwaenepoel. “Causal Consis-

tency and Latency Optimality: Friend or Foe?”. Proceedings of the 44th International

Conference on Very Large Data Bases (VLDB). 2018.

vii

Abstract
The use of transactions in distributed systems dates back to the 70’s. The last decade has

also seen the proliferation of transactional systems. In the existing transactional systems,

many protocols employ a centralized approach in executing a distributed transaction where

one single process coordinates the participants of a transaction. The centralized approach is

usually straightforward and efficient in the failure-free setting, yet the coordinator then turns

to be a single point of failure, undermining reliability/security in the failure-prone setting, or

even be a performance bottleneck in practice.

In this dissertation, we explore the complexity of decentralized solutions for reliable and secure

distributed transactions, which do not use a distinguished coordinator or use the coordinator

as little as possible. We show that for some problems in reliable distributed transactions, there

are decentralized solutions that perform as efficiently as the classical centralized one, while

for some others, we determine the complexity limitations by proving lower and upper bounds

to have a better understanding of the state-of-the-art solutions.

We first study the complexity on two aspects of reliable transactions: atomicity and consis-

tency. More specifically, we do a systematic study on the time and message complexity of

non-blocking atomic commit of a distributed transaction, and investigate intrinsic limitations

of causally consistent transactions. Our study of distributed transaction commit focuses on

the complexity of the most frequent executions in practice, i.e., failure-free, and willing to

commit. Through our systematic study, we close many open questions like the complexity of

synchronous non-blocking atomic commit. We also present an effective protocol which solves

what we call indulgent atomic commit that tolerates practical distributed database systems

which are synchronous “most of the time”, and can perform as efficiently as the two-phase

commit protocol widely used in distributed database systems.

Our investigation of causal transactions focuses on the limitations of read-only transactions,

which are considered the most frequent in practice. We consider “fast” read-only transactions

where operations are executed within one round-trip message exchange between a client

seeking an object and the server storing it (in which no process can be a coordinator). We show

two impossibility results regarding “fast” read-only transactions. By our impossibility results,

when read-only transactions are “fast”, they have to be “visible", i.e., they induce inherent

updates on the servers. We also present a “fast” read-only transaction protocol that is “visible”

ix

Preface

as an upper bound on the complexity of inherent updates.

We then study the complexity of secure transactions in the model of secure multiparty compu-

tation: even in the face of malicious parties, no party obtains the computation result unless all

other parties obtain the same result. As it is impossible to achieve without any trusted party,

we focus on optimism where if all parties are honest, they can obtain the computation result

without resorting to a trusted third party, and the complexity of every optimistic execution

where all parties are honest. We prove a tight lower bound on the message complexity by

relating the number of messages to the length of the permutation sequence in combinatorics,

a necessary pattern for messages in every optimistic execution.

Keywords: complexity, failures, distributed transactions, non-blocking atomic commit, indul-

gent atomic commit, causal consistency, optimistic secure multiparty computation, permuta-

tion sequence

x

Résumé
L’utilisation des transactions dans les systèmes distribués remonte aux années 70. La dernière

décennie a également vu la prolifération des systèmes transactionnels. Dans les systèmes

transactionnels existants, de nombreux protocoles utilisent une approche centralisée pour

exécuter une transaction distribuée : un seul processus coordonne les processus rattachés à la

transaction. L’approche centralisée est généralement simple, et elle est efficace en l’absence

de défaillance. Et pourtant, le coordinateur devient un point unique de défaillance, compro-

mettant la fiabilité / la sécurité en cas de défaillance, ou même un goulot d’étranglement de

performances en pratique.

Dans ce mémoire, nous examinons la complexité des solutions décentralisées pour des tran-

sactions distribuées fiables et sécurisées, qui n’utilisent pas un coordinateur ou utilisent le

coordinateur le moins possible. Nous montrons que pour certains problèmes de transaction

distribuée fiable, il y a des solutions décentralisées qui fonctionnent aussi efficacement que

les solutions centralisées classiques, tandis que pour d’autres, nons fournissons les limites

de complexité par la détermination des limites inférieures et supérieures, afin de mieux com-

prendre ce qu’est « l’état de l’art ».

Nous présentons d’abord deux analyse de la complexité sur deux propriétés des transac-

tions fiables, atomicité et cohérence, respectivement. Plus spécifiquement, nous effectuons

une étude systématique de la complexité en temps et message de validation atomique non-

bloquante d’une transaction distribuée, et étudions les limitations intrinsèques des transac-

tions causalement cohérentes. Notre étude de la validation des transactions distribuées se

concentre sur la complexité des exécutions en l’absence de défaillance où la décision est « vali-

der », qui sont considérées comme étant les exécutions les plus fréquentes en pratique. Grâce

à notre étude systématique, nous résolvons de nombreuses questions ouvertes comme la

complexité de la validation atomique non-bloquante synchrone. Nous présentons également

un protocole efficace qui résout ce que nous appelons validation atomique indulgent qui

tolère la pratique où les systèmes de base de données distribués sont synchrones « la plupart

du temps ». Le protocole peut fonctionner aussi efficacement que le protocole de validation à

deux phases largement utilisé dans les systèmes de bases de données distribuées.

Notre étude des transactions causales met l’accent sur les limites des transactions en lecture

seule, qui sont considérées comme les plus fréquentes en pratique. Nous considérons les

xi

Preface

transactions en lecture seule « rapide » où les opérations sont exécutées dans un échange de

messages d’un aller et retour entre un client cherchant un objet et le serveur le stockant (où

aucun processus ne peut être un coordinateur). Nous montrons deux résultats d’impossibilité

concernant les transactions « rapides » en lecture seule. Selon nos résultats d’impossibilité,

lorsque les transactions en lecture seule sont « rapides », elles doivent être « visibles », c’est-à-

dire qu’elles induisent des mises à jour inhérentes sur les serveurs. Nous présentons également

un protocole de transaction « rapide » en lecture seule qui est « visible » en tant que limite

supérieure de la complexité des mises à jour inhérentes.

Nous étudions ensuite la complexité des transactions sécurisées dans le modèle de calcul

multipartite sécurisé : même face à des parties malveillantes, aucune partie n’obtient le résultat

du calcul à moins que toutes les autres parties n’obtiennent le même résultat. Comme il est

impossible de réaliser sans aucune partie de confiance, nous nous concentrons sur optimisme

où si toutes les parties sont honnêtes, elles peuvent obtenir le résultat sans recourir à une

tierce partie de confiance. Nous nous concentrons sur la complexité de chaque exécution

optimiste où toutes les parties sont honnêtes. Nous montrons une limite inférieure serrée de

la complexité en message en reliant le nombre de messages à la longueur de la séquence de

permutation en combinatoire. La séquence de permutation représente un schéma nécessaire

dans l’échange de messages de chaque exécution optimiste.

Mots-clés : complexité, défaillance, transactions distribuées, validation atomique non-bloquante,

validation atomique indulgent, cohérence causale, calcul multipartite sécurisé optimisé, sé-

quence de permutation

xii

Contents
Acknowledgements v

Preface vii

Abstract (English/Français) ix

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Reliable and secure transactions . 2

1.1.1 Reliable transactions . 2

1.1.2 Secure transactions . 4

1.2 Contributions . 5

1.2.1 Distributed transaction commit . 5

1.2.2 Causal transactions . 6

1.2.3 Optimistic secure transactions . 6

1.3 Thesis Roadmap . 7

2 The Complexity of Distributed Transaction Commit 9

2.1 Introduction . 9

2.1.1 Problem statement . 9

2.1.2 Previous results . 10

2.1.3 Our results . 11

2.1.4 Techniques . 12

2.2 Models and Definitions . 13

2.2.1 Processes and channels . 13

2.2.2 Failures and executions . 13

2.2.3 Non-blocking atomic commit . 14

2.2.4 Modules . 15

2.2.5 Complexity measures . 16

2.3 Lower Bounds . 16

2.3.1 Message delays . 17

2.3.2 Messages . 19

xiii

Contents

2.4 Matching Protocols . 21

2.4.1 Delay-optimal protocols . 21

2.4.2 Message-optimal protocols . 25

2.5 Indulgent Atomic Commit . 43

2.5.1 Lower bounds . 43

2.5.2 Optimal protocol: overview . 47

2.5.3 Full protocol INBAC . 51

2.6 Related Work . 56

2.6.1 Complexity of commit protocols . 56

2.6.2 Commit protocols . 58

2.6.3 Low-latency commit protocols with weak semantics 58

2.7 Concluding Remarks . 59

3 The Complexity of Causal Transactions 61

3.1 Introduction . 61

3.2 Model and Definitions . 63

3.2.1 Model . 63

3.2.2 Causality . 64

3.2.3 Progress . 65

3.3 The Impossibility of Fast Transactions . 66

3.3.1 Definitions . 66

3.3.2 Result . 69

3.3.3 Proof by induction . 69

3.3.4 Construction of Ei mp . 70

3.3.5 Proof of Theorem 7 . 71

3.4 The Impossibility of Fast Invisible Transactions 76

3.4.1 Definitions . 76

3.4.2 Result . 77

3.4.3 Proof by contradiction . 77

3.4.4 Construction of executions . 78

3.4.5 Proof of Theorem 8 . 80

3.5 Alternative Protocols . 82

3.5.1 Visible fast read-only transactions . 82

3.5.2 Timestamp-based implementation . 89

3.6 Storage Assumptions . 92

3.6.1 Weak progress property . 93

3.6.2 Impossibility of fast transactions . 93

3.6.3 Impossibility of fast invisible transactions 95

3.7 Related Work . 96

3.7.1 Causal consistency . 96

3.7.2 Causal read-only transactions . 97

3.7.3 Impossibility results . 97

xiv

Contents

3.7.4 Transactional memory . 98

3.8 Concluding Remarks . 99

4 The Complexity of Optimistic Secure Transactions 101

4.1 Introduction . 101

4.2 Model and Definitions . 103

4.2.1 The parties . 103

4.2.2 Fair computation . 104

4.3 Lower Bound . 106

4.3.1 Proof overview and intuition . 107

4.3.2 Full proof of Theorem 9 . 108

4.4 An Optimal Protocol . 117

4.4.1 Preliminaries . 118

4.4.2 Protocol description . 118

4.4.3 Correctness proof of our protocol . 121

4.5 Related Work . 128

4.5.1 Optimistic fair computation . 128

4.5.2 Optimistic fair exchange . 128

4.5.3 Optimal optimistic schemes . 129

4.5.4 The shortest permutation sequence . 129

5 Concluding Remarks 131

5.1 Summary . 131

5.1.1 Distributed transaction commit . 131

5.1.2 Causal transactions . 132

5.1.3 Optimistic secure transactions . 133

5.2 Future Directions . 134

5.2.1 Reliable transactions . 134

5.2.2 Secure transactions . 135

Bibliography 147

Curriculum Vitae 149

xv

List of Figures
2.1 State transition after 2U . 48

3.1 An example transaction . 64

3.2 Illustration of Ei mp and the base case . 70

3.3 Timeline in Lemma 8 . 75

3.4 Construction and extension of Ei . 79

3.5 Extension of two executions . 81

4.1 The output of Pi if Pi stops at some point in execution E 107

4.2 The three key executions in the proof of Lemma 15. A dot line means that any

event might occur. A dashed line means that an event does not occur. A solid

line means that the same event as in E occurs. 115

4.3 Two key executions in the proof of Lemma 16. A dot line means that any event

might occur. A dashed line means that an event does not occur. A solid line

means that the same event as in E occurs. 117

xvii

List of Tables
2.1 Complexity of Atomic Commit. NF = network-failure executions; CF = crash-

failure executions; A = agreement; V = validity; T = termination. Fraction d/m

in a cell (X , Y) means that the tight lower bounds are d message delays, m

messages respectively if (1) every failure-free execution solves NBAC, (2) every

crash-failure execution satisfies a set X of properties and (3) every network-

failure execution satisfies a set Y of properties. For every empty cell (X , Y), there

exists a non-empty cell (Z , Y) such that X ∪Y = Z 11

2.2 Delay-optimal Protocols. 1NBAC is a synchronous NBAC protocol. Each protocol

achieves its lower bound in every nice execution. 22

2.3 Message-optimal Protocols. Protocol (n-1+f)NBAC is a synchronous NBAC pro-

tocol. Each protocol achieves its lower bound in every nice execution. 25

2.4 Complexity of Indulgent Atomic Commit, and Synchronous NBAC with f Crashes 59

2.5 Complexity of INBAC, (n-1+f)NBAC, 1NBAC, 2PC, PaxosCommit and faster Pax-

osCommit . 59

xix

1 Introduction

A distributed transaction is a transaction that spans multiple participants [1]. Gray [2] de-

scribed a transaction as a group of actions that transform the state of multiple data items in a

consistent way. Distributed transactions lie at the heart of many recent distributed database

systems such as Helios [3], where database nodes are participants and jointly decide the

outcome of a distributed transaction. Distributed transactions are also a key component in

distributed transactional storage systems such as Cassandra [4], where both storage servers

and users of storage are participants and where a user may interact with multiple servers via

a transaction. Distributed transactions also play a role in electronic commerce, focusing on

security. These transactions are called secure transactions and fall into the category of secure

multi-party computation [5, 6].

A lot of effort has been devoted to improving the performance of distributed transactions.

To further improve the performance, we study the complexity of distributed transactions

and in this dissertation, we focus on reliable and secure transactions. Roughly speaking,

reliable and secure transactions ensure the correctness of transaction execution in the face of

failures. Distributed transaction would be easy to implement if there were no failure. Here no

failure is two-fold: (1) no participant crashes; all participants follow the assigned protocol (for

distributed transactions) faithfully; and (2) the communication delay is upper-bounded by a

known value. In the case of no failure, although the transaction spans multiple participants, the

following centralized solution can be proposed. One distinguished process called coordinator

orchestrates database nodes, multiple storage servers, or all the participants involved in the

transaction. The coordinator simply receives a request from each participant, and computes a

response for each participant, which then completes the transaction. However, the coordinator

itself thus becomes a single point of failure and may be considered a performance bottleneck

as well. In addition, according to reports on network failure [7, 8], storage failure [9] and node

failure [10, 11], failures largely exist. As a result, a solution that avoids a coordinator and takes

failures into account is practically appealing. The motivation of this dissertation is to study

the complexity and propose optimal protocols of such solution in the context of reliable and

secure distributed transactions.

1

Chapter 1. Introduction

1.1 Reliable and secure transactions

1.1.1 Reliable transactions

A reliable transaction is required to follow the ACID properties [2, 12]: atomicity, consistency,

isolation and durability, among which in this dissertation, we focus on atomicity and isolation.

If a transaction is atomic, then either the transaction executes to its completion and its effects

persist (i.e., a transaction commits), or the transaction appears to have not executed at all

(i.e., a transaction aborts). Isolation levels are defined based on the behavior of concurrent

transactions [13, 14]. Hereafter we use the terminology “transaction consistency” to refer to

isolation. In conventions, the term consistency may refer to (1) the enforcement of predefined

rules on data by transactions; or (2) criteria on the behavior of transactions, for example, the

outcome and/or actions of concurrent transactions. Our usage of the term refers to the latter,

where consistency and isolation are indeed correlated concepts [15].

Atomicity

In a distributed transaction that spans multiple database nodes, each node executes a sub-

transaction. Here each subtransaction may contribute to aborting the final transaction if the

subtransaction is denied access to some data (for example, due to lock conflict or requirements

of certain isolation levels). Each node can be considered to have the right to cast a vote of 0

(abort) or 1 (commit) according to the failure or success of its subtransaction. To preserve

the atomicity of the distributed transaction, all nodes have to agree on one single decision.

Clearly, these nodes agree to commit only if all votes are 1. The protocol defined to orchestrate

distributed transaction commit is called a commit protocol [16].

The commit protocol employed by many distributed database systems (for instance, Sinfonia

[17], Percolator [18], Spanner [19], Clock-SI [20] and Yesquel [21]) is two-phase commit (2PC).

The 2PC protocol can be considered as one centralized solution mentioned above. Roughly

speaking, a coordinator receives the vote from each node, decides the outcome based on all

votes and then informs each node of the decision. In its original form [22], as explained by

[23], when the coordinator crashes, then the outcome on the transaction is unknown and can

block nodes and clients which wait for an outcome.

Various methods have been implemented to mitigate the risk over the crash failure of the

coordinator. For example, a distinguished node can probe the coordinator for failure detection

and can coordinate the rest of the nodes to continue the commit protocol [17, 21]. If locks are

left on some data, then the coordinator of later transactions may try to remove these locks [18].

Another way is to replicate the coordinator (as well as each node) with Paxos state machines

[24] so that the coordinator is implemented by multiple physical nodes to mitigate the crash

failure itself [19]. Despite extra effort in dealing with crash failures, previous non-blocking

protocols such as three-phase commit [16] are not widely used due to their additional time

complexity compared with 2PC (for example in Sinfonia [17]). On the other hand, few commit

2

1.1. Reliable and secure transactions

protocols are designed for a practical network where messages can be delayed out of some

bounds from time to time (we say a network failure occurs). In addition, little was known

on the complexity of commit protocols except for few results on the case where only crash

failures are considered [1, 25, 26].

Transaction consistency

As is mentioned previously, transaction consistency here refers to the isolation property of

reliable transactions. ANSI SQL standard [13] specified four levels of isolation: read uncom-

mitted, read committed, repeatable read, anomaly serializable (named by a later article [14]).

Roughly speaking, ANSI SQL isolation levels define the output of reads in a transaction when

some update transaction is concurrent [13, 14]. In addition to ANSI isolation levels, many

database systems including MS SQL server [27], Oracle Berkeley DB [28] and PostgreSQL

[29] support snapshot isolation [14] or serializable snapshot isolation [30]. As transaction

consistency criteria, snapshot isolation and serializable snapshot isolation require that at least

one between two concurrent transactions that write the same object must abort [14, 30].

In a update-anywhere implementation of data storage (as in geo-distributed storage Walter

[31]), data are replicated such that multiple physical nodes (called replicas) can respond to

requests of access to the same item [32]. In this setting, snapshot isolation and serializable

snapshot isolation cannot be implemented without synchronous communication among

replicas during a transaction [33]. Here synchronous communication means the completion

of a transaction waits for some responses from other replicas. The possibility of network

partition and consideration over latency between geo-distributed database nodes unfavours

these isolation levels [33]. There is a trend for distributed data store and database services to

choose not to support isolation levels as the traditional SQL databases above. For instance,

Amazon Dynamo [34] and Cassandra [4] adopt eventual consistency, which allows an update

to be eventually communicated with all replicas. While in the original definition of eventual

consistency, transactions are not considered, eventually consistent storage like Dynamo and

Cassandra indeed does not support transactions by default.

Recently, quite a few transactional storage systems adopt causal transactions such as COPS

[35], Eiger [36], Orbe [37], GentleRain [38], SwiftCloud [39], Cure [40] and Occult [41]. Causal

transactions allow conflicts of concurrent updates to be resolved asynchronously and in these

storage systems, causal transactions are implemented without synchronous communication

among replicas during a transaction. Causal consistency was initially defined for single

accesses of read or write in memory [42] and was then extended to transactions [43]. Different

from traditional transactions (which for example under snapshot isolation, can abort some

concurrent transactions), causal transactions do not need to abort as shown in existing systems

[35, 36, 37, 38, 39].

Recent work [36, 38] compares causal transactions with a group of data accesses (called a

transaction as an abuse of notations) under eventual consistency. If causal transactions

3

Chapter 1. Introduction

always take two-round communication, then the latency of causal transactions doubles that

of eventually consistent transactions [36]. Although there is a gap of performance, causal

transactions in most transactional storage [35, 36, 38, 40, 41] can induce more than one-round

communication, where a client or some server plays the role of a coordinator. The COPS-

SNOW algorithm [44] has causal transactions in one-round communication while the design

decisions seem contrived and sometimes, the performance results might not meet expectation

[44]. A better understanding of the complexity of causal transactions is thus necessary (even

for the best case where crash or network failures, considered for commit protocols, are not

taken into account).

1.1.2 Secure transactions

In electronic commerce, a transaction refers to the exchange of goods and services. As the

standard Secure Electronic Transaction (SET) [45] shows, different from database transactions,

distributed electronic transactions primarily focus on security properties [46, 6], including

privacy and authenticity. SET can be considered as a protocol between two parties: buyer and

merchant, where their respective banks are trusted and coordinate the exchange between the

two parties [45]. Some proposal follows the idea of SET and extends it to more parties. For

example, STP [47] stipulates a subtransaction to involve only two party but allows multiple

subtransactions with different pairs of parties to join in the same transaction. These proposals

involve trusted parties (called a trusted third party in general) in every execution of a protocol.

In general, disputes may arise from the execution of a protocol where different parties in the

protocol claim different results of the same transaction. In the case of electronic commerce, a

merchant may claim a successful transaction to have failed and double-charge a buyer while a

buyer may claim a failed transaction to be successful and ask for e-goods from a merchant.

Such behavior deviates from the given protocol, and is considered to be malicious. (On the

other hand, a party which follows faithfully the given protocol is said to be honest.) In face of

malicious parties, fairness, in the sense that either all parties terminate the transaction with

the same output or none of them does, is a necessary security property of secure transactions

[48]. Fairness problem is difficult to solve in a truly distributed setting as shown by (1) the FLP

impossibility [49] where agreement cannot be achieved if a single party can crash (considered

as malicious in the context of secure transactions), for deterministic solutions, and (2) the

impossibility of a coin flip [50] where if two parties jointly generate a random bit and one of

them can be malicious, then the random bit can always be biased, for randomized algorithms.

The difficulty lies in the fact that some malicious behavior can be indistinguishable from some

behavior of the asynchronous network where a message is only guaranteed to be eventually

received, yet honest parties are still guaranteed to have fairness.

Thus a trusted third party (assumed to be honest) is necessarily introduced. However, as

discussed previously, a trusted third party can be a single point of failure or a performance

bottleneck. As a result, optimistic fair exchange [48], where the trusted third party is not

4

1.2. Contributions

involved when all parties are honest, is appealing. To generalize the possible function executed

by a distributed transaction, we consider multi-party computation in general (rather than

two-party exchange). In this dissertation, we consider optimistic fair multi-party computation

[48, 6] as an equivalent to optimistic secure transaction. Many results have been published on

problems related to fair computation [51, 52, 53, 54, 55, 56]. Yet the complexity of optimistic

fair multi-party computation is still unknown.

1.2 Contributions

In this dissertation, we study the complexity of the following three specific problems in the

context of reliable and secure distributed transactions.

1.2.1 Distributed transaction commit

First, we study the complexity of atomic commit protocols which lie at the heart of reliable

distributed transactions. The commit problem can be abstracted as follows. A set of processes

(database nodes) aim to agree on whether to commit or abort a transaction (agreement

property). The commit decision can only be taken if all processes are initially willing to

commit the transaction, and this decision must be taken if all processes are willing to commit

and there is no failure (validity property). An atomic commit protocol is said to be non-

blocking if every correct process (a database node that does not fail) eventually reaches a

decision (commit or abort) even if there are failures elsewhere in the distributed database

system (termination property).

We present the first systematic complexity study of the atomic commit problem. Our result

is systematic in two ways: (1) both crash and network failures are considered and (2) we

study the complexity according to the robustness of the protocol in the face of failures. More

specifically, we define a subset of the properties above (validity, agreement, and termination)

to be satisfied in failure-prone scenarios (where crash failure or network failure or both can

occur) as a robustness metric, and study the complexity of all combinations of all subsets and

all failure-prone scenarios.

In Chapter 2, we present this complexity result (time and message complexity) of our system-

atic study. We measure the best-case complexity [57], in the executions that are considered

the most frequent in practice, i.e., failure-free, with all processes willing to commit. Through

our systematic study, we answer many open questions like the complexity of synchronous non-

blocking atomic commit (designed for the system where only crash failures occur). We also

present optimal protocols which may be of independent interest. In particular, we present an

effective protocol which solves what we call indulgent atomic commit that tolerates practical

distributed database systems which are synchronous “most of the time”.

5

Chapter 1. Introduction

1.2.2 Causal transactions

Second, we study the complexity of causal transactions which are a trend of recent transac-

tional storage systems that need not ensure strong consistency but only causality. Departing

from strong consistency models, causal transactions can be abstracted as follows. Clients

interact with servers (storage) via transactions which group read and write operations of

objects in the storage. The causality relation basically defines the order between any two

transactions in the following three ways: (1) two transactions performed by the same client

ordered according to when the client performs the transactions (program-order causality

relation), (2) two transactions of which the latter includes a read which returns the value

written by the former (read-from causality relation), and (3) transitivity. Causally consistency

ensures that transactions can be ordered in a way that respects causality.

As read-only transactions are usually considered the most frequent in practice, we ask whether

read-only transactions can be “fast”, i.e., their operations can be executed within one round-

trip message exchange between a client seeking an object and the server storing it. Our goal

is to have a better understanding of the current design choices and performance results of

causal transactions.

In Chapter 3, we present the first study of the inherent cost of “fast” read-only causal trans-

actions, contributing to this understanding. In general storage systems where some trans-

actions are read-only and some also involve write operations, we show that even read-only

transactions cannot be “fast”. In such systems (as sometimes implemented today) where

all transactions are read-only, i.e., updates are performed as individual operations outside

transactions, read-only transactions can indeed be “fast”, but we prove that they need to be

“visible” to the servers in the sense that they induce inherent updates on these servers. The

updates in turn impact the overall performance of the transactional storage.

1.2.3 Optimistic secure transactions

Finally, we study the message complexity of optimistic fair computation, as a generalized

form of optimistic secure transactions. More specifically, in the problem of multi-party com-

putation, a set of n parties aim to jointly compute a function given their inputs, where the

function is previously agreed by all parties. No party obtains the computation result unless all

other n −1 parties obtain the same result (fairness property). If all n parties are honest, then

they can obtain the computation result without resorting to a trusted third party (optimism

property). Different from reliable transactions, to ensure security against malicious behavior,

the definition of fairness for optimistic secure transactions follows the classical formulation

of secure multi-party computation [46, 6]. Following our complexity study of reliable trans-

actions, we measure the complexity of optimistic fair computation for the best case as well,

which is considered the most frequent in practice. Namely, we study the complexity of any

optimistic execution (of a protocol) where all parties are honest.

6

1.3. Thesis Roadmap

In Chapter 4, we prove a lower bound on the message complexity of optimistic fair computa-

tion for n parties among which n −1 can be malicious in an asynchronous network for any

function. We also show the tightness of the lower bound by presenting a matching protocol

of optimistic fair exchange (an important function in electronic transactions). In both our

proof and our design of an optimal protocol, we relate the optimal message complexity of op-

timistic fair computation to the length of the shortest permutation sequence in combinatorics

[58, 59, 60].

1.3 Thesis Roadmap

The rest of the dissertation is organized as follows.

• Chapter 2 presents an exhaustive study of the complexity of distributed commit proto-

cols.

• Chapter 3 investigates the complexity of read-only transactions in causally consistent

systems.

• Chapter 4 presents the message complexity of optimistic fair computation.

• Chapter 5 concludes this dissertation and discusses potential future work.

7

2 The Complexity of Distributed Trans-
action Commit1

2.1 Introduction

The use of transactions to ensure the consistency of distributed databases systems despite

concurrency and failures dates back to the 70’s [62, 22, 63], and is still prominent today.

Many modern distributed information systems are transactional, including HP’s Sinfonia [17],

Yahoo’s PNUTS [64], Google’s Percolator [18] and Spanner [19], Clock-SI [20] and Yesquel [21].

At the heart of those distributed transaction processing systems lies the fundamental atomic

commit problem [22]. To illustrate the nature of the problem, consider a distributed database

system that ensures the serializability of transactions by tracking their concurrency conflicts

across datacenters (nodes) as in Helios [3]. In short, each datacenter D votes to abort every

transaction t x that causes a conflict at D. Transaction t x is committed if no datacenter detects

any conflict involving t x. To orchestrate the termination of t x, coordination is necessary

among datacenters: all have to agree on whether to commit or abort t x, despite failures,

and t x cannot be committed if at least one datacenter votes to abort. This coordination is

called a distributed commit protocol and its complexity impacts the performance of the entire

distributed database system [3].

2.1.1 Problem statement

More specifically, the atomic commit problem consists for a set of nodes of the distributed

database system (we simply call them processes) to decide whether to abort or commit a

transaction. The decision is based on the vote of each process about the local faith of the

transaction. A process votes “no” if the transaction did not execute correctly at that process

(due to a full disk, a concurrency control problem, etc.). A process votes “yes” (willingness to

commit) if the transaction did execute correctly at that process. The processes (a) commit

the transaction only if all vote to commit, and (b) have to commit the transaction if all vote to

1Postprint version of the article published in SIGMOD/PODS 2017: Rachid Guerraoui and Jingjing Wang. “How
Fast can a Distributed Transaction Commit?” [61]

9

Chapter 2. The Complexity of Distributed Transaction Commit

commit and there is no failure. This property is usually called validity [65, 66, 67, 68, 69]. All

processes need to agree on the same decision. This property is called agreement [65, 66, 67,

68, 69]. If one additionally stipulates that correct processes (those that do not crash) need to

eventually decide (commit or abort) despite failures (e.g., crashes of other processes), then

this property is called termination [68, 69], and the resulting problem, where processes need

to ensure validity, agreement as well as termination, is called non-blocking atomic commit

(NBAC) [16]. NBAC has been investigated since the 70’s by the database and distributed system

communities [16, 1, 70, 65, 71, 66, 72, 73].

In this chapter, we present a systematic study of the time and message complexity of the atomic

commit problem and study the exact tradeoff between robustness and best-case complexity (in

the sense of Lamport [57]), i.e., the complexity of any failure-free execution where all processes

vote to commit. Such executions, called nice executions in this chapter, are arguably the most

frequent in practice and are those for which protocols are usually optimized.

Not surprisingly, this complexity depends on robustness, i.e., on which property (validity,

agreement, termination) is required in which executions (including less likely executions

with failures). The most robust form of atomic commit protocol is, roughly speaking, the

one that tolerates both crash failures (i.e., some process crashes) and network failures (e.g.,

a network partition occurs and later recovers), i.e., all executions with such failures have to

solve NBAC. However, by the impossibility result of consensus [74, 49], the most robust form

(in an asynchronous network where at least one process can crash) has infinite complexity. On

the contrary, the least robust form of atomic commit, of which only failure-free executions are

required to solve NBAC, is clearly easy to solve in finite complexity. Although there is obviously

a tradeoff between robustness and complexity, the exact tradeoff was not clear. Furthermore,

between the least and most robust forms of atomic commit, the situation is more complicated

and the complexity results harder to obtain.

We exhaustively study complexity in the cases between two extremes, assuming certain ro-

bustness of an atomic commit protocol. More precisely, we determine the optimal number

of message delays/messages in nice executions of a protocol π assuming that, in π, (1) every

crash-failure execution satisfies X and (2) every network-failure execution satisfies Y , where

X and Y are subsets of these three properties: agreement, validity, and termination. With two

kinds of failure-prone executions (crash-failure and network-failure) and three properties, we

end up with (23)2 = 64 possibilities, as shown in Table 2.1. Since a property satisfied in every

network-failure execution is also satisfied in every crash-failure execution, the 64 possibilities

reduce to 27 different cases, the non-empty cells in Table 2.1.

2.1.2 Previous results

Many distributed database systems (Sinfonia [17], Percolator [18], Spanner [19], Clock-SI [20]

and Yesquel [21], for instance) guarantee validity and agreement in crash-failure executions

through a two-phase commit (2PC) protocol [22]. 2PC induces two communication rounds

10

2.1. Introduction

Table 2.1 – Complexity of Atomic Commit. NF = network-failure executions; CF = crash-failure
executions; A = agreement; V = validity; T = termination. Fraction d/m in a cell (X , Y) means
that the tight lower bounds are d message delays, m messages respectively if (1) every failure-
free execution solves NBAC, (2) every crash-failure execution satisfies a set X of properties
and (3) every network-failure execution satisfies a set Y of properties. For every empty cell (X ,
Y), there exists a non-empty cell (Z , Y) such that X ∪Y = Z .

������NF
CF � A V T AV AT VT AVT

� 1/0 1/0 1/n −1+ f 1/0 1/n −1+ f 1/0 1/n −1+ f 1/n −1+ f
A 1/0 1/n −1+ f 1/0 2/2n −2+ f
V 1/2n −2 1/2n −2 1/2n −2 1/2n −2
T 1/0 1/0 1/n −1+ f 1/n −1+ f

AV 1/2n −2 2/2n −2+ f
AT 1/0 2/2n −2+ f
VT 1/2n −2 1/2n −2

AVT 2/2n −2+ f

among processes. Although efficient, 2PC does not solve NBAC in crash-failure executions

since it does not guarantee termination. However, NBAC can actually be solved in crash-failure

executions (by a three-phase commit protocol [16], which has only finite complexity).

Except for some results on the number of messages necessary for synchronous NBAC protocols

(which solve NBAC in every crash-failure execution) [1, 25, 26], the fundamental question of

the complexity of synchronous NBAC has actually been open for more than three decades

[16, 1]. In fact, only the lower bound of 2n −2 messages in the face of n −1 crashes [1] was

known before. Although important, little was known on the complexity of atomic commit (e.g.,

when network failures are also considered) or its tradeoff with robustness, which we address

in this chapter.

2.1.3 Our results

Table 2.1 summarizes our results for the 27 atomic commit problems considered. Besides

the tradeoff between complexity and robustness (which properties are required in which

execution), we also highlight a tradeoff between time and message complexity. We prove

that in 18 out of 27 problem variants, the optimal number of message delays and the optimal

number of messages cannot be achieved at the same time.

Among the 27 variants, the most robust one, which we call indulgent atomic commit, is partic-

ularly appealing.2 Indulgent atomic commit captures the best robustness3 of a distributed

2We define indulgent atomic commit in the same vein as indulgent consensus [75, 76] protocols like Paxos [24],
CHT [69] and others [77, 78, 79, 80].

3The most robust form is in the setting of an asynchronous network where at least one process can crash, which
cannot be achieved. The best robustness achieved here tolerates network failures in the setting of an eventually

11

Chapter 2. The Complexity of Distributed Transaction Commit

commit protocol, i.e., despite failures, agreement, validity and termination are still satisfied.

We propose a protocol, which we denote by INBAC, that matches the lower bound of two

message delays of indulgent atomic commit. Moreover, we prove that INBAC is optimal in

the number of messages among all delay-optimal indulgent atomic commit protocols. Thus,

in practical distributed database systems that are synchronous “most of the time" [81]4, and

where practitioners consider violations of timeouts (e.g., due to network failures), if rare, to be

acceptable, INBAC tolerates such violations and is also optimal in complexity for the arguably

most frequent executions. Comparing our INBAC protocol with the popular 2PC protocol, we

show, interestingly, that (1) INBAC has the same best-case message delay as 2PC if all processes

start spontaneously, and (2) in the special case where at most one process can crash (among n

processes), INBAC and 2PC use 2n and 2n−2 messages respectively. In this sense, INBAC may

be of independent interest, as a more robust yet efficient alternative to 2PC for implementing

distributed transactions.

At the same time, we close the question of the complexity of synchronous NBAC (which

is one among the 27 cases we consider). We show, for the first time, that for synchronous

NBAC, one message delay is optimal. We also generalize Dwork and Skeen’s lower bound of

2n −2 messages [1] to n −1+ f messages in the face of f crashes and propose a matching

message-optimal synchronous NBAC protocol.

2.1.4 Techniques

We denote a cell in Table 2.1 by a property pair (X ,Y). (X ,Y) is less robust than another pair

(U ,V) if X ⊆U and Y ⊆V . Then our proof goes through two main steps. First, we group the

pairs (X ,Y) that give the same number of message delays/messages in Table 2.1 and prove

the lower bound for the least robust pair in each group. To design matching protocols, by

symmetry, we look for “the most robust pair” in each group. However, as shown in Table 2.1,

in some groups, there is no “most robust pair”. Thus, our second step is to choose, in each

group, the pairs that are locally maximal in robustness and present a protocol that matches

the lower bound for each local maximum.

Three techniques are key to our results.

1. To prove our lower bounds, we introduce and leverage the notion of “process reachabil-

ity”, the arrival of a message m at process Q that makes Q know process P ’s vote, which

is necessary in the context of a network-failure execution. (Dwork and Skeen [1] used

“process coloring” in proving lower bounds for synchronous NBAC. Compared with our

notion, theirs does not distinguish the arrival from the departure of a message, since

they solely focus on crash-failure executions, featuring bounded message delays.)

synchronous network, which we define precisely in Section 2.2.
4It was experimentally shown, e.g., in [81], that the latency of a communication round is below some seconds

(most of the time) if the link does not lose too many messages.

12

2.2. Models and Definitions

2. To design our optimal protocols, we introduce and leverage “implicit” votes for the

willingness to commit. For example, to achieve 0-message protocols, instead of receiving

a message telling process P process Q’s vote, P may know that Q votes 1 by not receiving

a certain message. We support an optimal nice execution by a complex failure-free

execution that aborts.

3. Another technique we use is “helping”. To reach the smallest number of messages or

message delays in any nice execution, if some failure occurs, then processes must ask

for help. To enable helping, backing up votes at other processes is necessary while

sometimes a message of acknowledgement (that confirms the success of the backup) is

also necessary. Both are key ideas behind INBAC.

The rest of the chapter is organized as follows. Section 2.2 presents the distributed database

models we consider, defines the non-blocking atomic commit problem and introduces the

building blocks (modules) of the optimal protocols proposed in this chapter. Section 2.3

establishes our lower bounds. Section 2.4 describes atomic commit protocols that meet the

lower bounds. Section 2.5 presents indulgent atomic commit, our protocol INBAC and a proof

of its optimality. Section 2.6 discusses related work.

2.2 Models and Definitions

2.2.1 Processes and channels

We consider a set Ω of n processes P1,P2, . . . ,Pn (sometimes also denoted by O, P , Q, R).

Here processes represent database nodes. Processes communicate by exchanging messages,

through the network.

We assume that no process deviates from its specification and at most f ,1 ≤ f ≤ n−1 processes

can crash. After a process crashes, it does not send any message. If a process does not crash, it

is said to be correct.

Communication channels do not modify, inject, duplicate or lose messages. Every message

sent is eventually received.

2.2.2 Failures and executions

We assume synchronous computation: there is a known upper bound on the time to execute a

local step, which includes the delivery of a message by a process, its local processing by that

process, as well as the sending of a message as a consequence of that processing.

Communication is said to be synchronous if there is a known upper bound on message trans-

mission delays. Communication is said to be eventually synchronous if the delay on message

transmission might be unbounded but only until some, possibly unknown, global stabilization

13

Chapter 2. The Complexity of Distributed Transaction Commit

time (after which there is a known upper bound on delays).5 We accordingly consider two

kinds of system models (or simply systems): a synchronous system [1] and an eventually

synchronous system [82], based on their respective assumptions on communication.

An execution of a synchronous system is either failure-free or has crash failures: either all

processes are correct, or some process crashes, while all message transmission delays are

smaller than some known upper bound which we denote by U .6 If, in some execution, some

message transmission delay is greater than U , then the system is no longer synchronous: we

say that a network failure occurs. An execution of an eventually synchronous system can be

failure-free, has crash failures, or network failures. We call a failure-free execution an execution

where no failure occurs, a crash-failure execution one execution of a synchronous system

(where only crash failures are possible) and a network-failure execution one execution of an

eventually synchronous system (where network failures are also possible). We accordingly call

a synchronous system and an eventually synchronous system, a crash-failure system and a

network-failure system, respectively.

2.2.3 Non-blocking atomic commit

We consider the problem of non-blocking atomic commit (NBAC) in the classical sense of

Skeen [16], which was later refined in [68, 69].

Definition 1 (NBAC [68, 69, 16]). A protocol π is an atomic commit protocol if π is defined by

two events:

• Propose: Pi , i = 1,2, . . . ,n proposes value v = 1 (vote “yes”) or v = 0 (vote “no”).

• Decide: Pi , i = 1,2, . . . ,n outputs the decided value.

An execution of π solves NBAC if it satisfies the following three properties:7

• Validity: If a process decides 0, then some process proposes 0 or a failure occurred. If a

process decides 1, then no process proposes 0.

• Termination: Every correct process eventually decides.

• Agreement: No two processes decide differently.

Given a system S (crash-failure or network-failure), π solves NBAC in S if every execution of

π in S solves NBAC.
5Recall that, in an asynchronous system, without any communication bound, agreement problems like consen-

sus and NBAC are impossible [49].
6For simplicity, we assume hereafter sending messages and processing messages are considered negligible in

time. The assumption is equivalent to say that U is an upper bound on time spent on the local computation and
synchronous communication.

7An execution of an atomic commit protocol also satisfies a property called integrity, i.e., no process decides
twice in any execution. This is immediate to satisfy in our context so we omit it for presentation simplicity.

14

2.2. Models and Definitions

(Later in the chapter, in Section 2.5, we will introduce our new variant of the problem: indul-

gent atomic commit.)

A comparison with previous definitions from the literature is now in order. A synchronous

NBAC protocol [16, 1] is a protocol which solves NBAC in a crash-failure system (and thus

the complexity is covered by our study). In previous impossibility results [68, 83, 84, 75, 76],

the definition of validity depended on which failure may occur. (Strong) validity stipulates

that 1 must be agreed if no crash failure occurs and every process proposes 1, which does

not fit the context where no crash failure occurs but network failures can happen. On the

contrary, a weak form of validity, weak validity, allows processes to abort a transaction (decide

0) in this context (even if all processes propose 1). In this chapter, we do a systematic study

where some atomic commit problem is solved so that validity is satisfied in every crash-failure

execution and weak validity is satisfied in every network-failure execution. Hence we unify in

Definition 1 validity and weak validity for presentation clarity and consistency with previous

impossibility results.

2.2.4 Modules

The pseudo code which we use to describe the full protocols in this chapter follows the

approach of Cachin et al. [85]. The pseudo code uses “callbacks”: an algorithm is described as

a set of event handlers where a process reacts to incoming events by possibly triggering new

events.

When presenting optimal protocols, we consider each case in Table 2.1 a different abstraction

of the non-blocking atomic commit problem as a set of event handlers. More specifically,

each abstraction (an instance of which is denoted by name) defines two events (in addition

to event <name, Init> which performs the initialization of the module once for all): <name,

Propose | v> and <name, Decide | d> where v is the value proposed to the instance name and

d is the decision of the instance name.

Every optimal protocol is built upon communication channels and a few of them employ

a timer. The communication channels are abstracted as a module called PerfectPointTo-

PointLinks, denoted by pl. The module defines two events: <pl , Send|r , m> and <pl , Deliver|s,

m>, where r is the receiver of the sending event, s is the sender of the message delivery event

and m represents the message. The timer is abstracted as a module called Timer, denoted

by timer. The module defines two events: <t i mer , Timeout> and set timer, where t i mer

timeouts at the time set previously. A timer may be set several times at one process.

Some of our optimal protocols use an underlying consensus module. The module solves

consensus in a network-failure system [74, 82, 66], which we recall in Definition 2. 8 Many

solutions to consensus have been devised, e.g., Paxos and its variants [24, 87], but the correct-

ness of INBAC or the best-case complexity of it does not rely on a particular algorithm among

8Consensus in this sense is sometimes called uniform consensus in the literature [86].

15

Chapter 2. The Complexity of Distributed Transaction Commit

these solutions. The modular approach (using consensus as a service) has been also taken in

other distributed algorithms [73, 88].

Definition 2 (Consensus [74]). A consensus protocol is defined by two events: propose, by

which a process proposes a value v = 0 or 1, and decide, which outputs a decision to the pro-

cess; furthermore, every execution satisfies the following properties: termination, agreement

(similar to those properties of NBAC) and the following validity property:

• Validity: If a process decides v , then v was proposed by some process.

The indulgent uniform consensus [78] solves uniform consensus (as Definition 2) in every

network-failure execution and is abstracted as a module called IndulgentUniformConsensus,

denoted by iuc. The module defines two events: <i uc, Propose | v> and <i uc, Decide | d>,

where v is the value proposed to i uc and d is the decision of i uc. We also consider a module

called UniformConsensus, denoted by uc. The module defines two events: <uc, Propose |

v> and <uc, Decide | d>, where v is the value proposed to uc and d is the decision of uc.

The module solves uniform consensus (as Definition 2) in every crash-failure execution,

while it needs only to satisfy a subset of properties of uniform consensus depending on the

optimal protocol where the module is employed: if the optimal protocol satisfies property P of

Definition 1 in every network-failure execution, then the module also satisfies P of Definition

2 in every network-failure execution.

2.2.5 Complexity measures

We define a nice execution of an atomic commit protocol as a failure-free execution in which

every process proposes 1. We study in this chapter best-case complexity, i.e., the complexity

over nice executions (which are arguably the most frequent in practice). We consider two

complexity measures: the number of messages and the number of message delays. Here

(as in Lamport [57, 89]), for any message m, one message delay is a period of time between

two events: the sending of m and the reception of m [57, 89]. Thus if local computation is

instantaneous (negligible), and every message is received exactly one unit of time after it was

sent, then the number of message delays of an execution is the number of units of time of that

execution [57].

2.3 Lower Bounds

In this section, we establish lower bounds on the number of message delays, and then lower

bounds on the number of messages. For each lower bound, we prove by contradiction that

some messages are necessary in every nice execution and then count the number of these mes-

sages. We show that assuming a nice execution E that does not contain some of the necessary

messages, we can construct a crash-failure (or network-failure) execution indistinguishable

from E that violates a certain property.

16

2.3. Lower Bounds

2.3.1 Message delays

As shown in Table 2.1, there are two possibilities for the lower bound on the number of message

delays: 1 and 2. There are four non-empty cells in Table 2.1 of which the lower bound is 2: (AVT,

A), (AVT, AV), (AVT, AT), and (AVT, AVT). Among them, (AVT, A) is the least robust. The rest of

the non-empty cells have 1 as the lower bound, among which (�, �) is the least robust. Thus

we need only to prove lower bounds for two cells: (�, �), (AVT, A) respectively, as summarized

in Theorem 1.

Theorem 1 (Lower bound on message delays). Let P1 and P2 be two subsets of P = {agreement,

validity, termination}. Let π be any protocol that (a) solves NBAC in every failure-free execution,

(b) satisfies P1 in every crash-failure execution and (c) satisfies P2 in every network-failure

execution. Let d be the smallest number of message delays among all nice executions of π. If for

π, P1 =P2 =�, then d ≥ 1. If for π, P1 =P and P2 = {agreement}, then d ≥ 2.

The proof of the first part of Theorem 1 is immediate: to satisfy validity in every failure-free

execution, no process can decide immediately; i.e., the process has to wait for at least one

message delay to know other processes’ votes.

The proof of the second part is less obvious, and goes through an intermediary lemma. This

lemma makes use of the notion of “process reachability”, which we introduce here and use in

all our lower bound proofs.

Definition 3 (Reaching a process). If a protocol instructs a process sr c to send a message m

to another process dest , then we say that sr c is the source of m and dest , the destination of m.

Let E be any execution. In E , if sr c sends m at time t , then we may interchangeably say that

m leaves from sr c (for dest) at t ; if at time t , dest receives m, then we may interchangeably

say that m arrives at dest at t .

Let m = {m1,m2, . . . ,ml } be a sequence of messages such that (a) the source of m1 is P , (b)

the destination of ml is Q,Q �= P , (c) the source sr ci of mi is the destination of mi−1 for

i = 2,3, . . . , l , and (d) mi leaves from sr ci later than or at the time at which mi−1 arrives at sr ci

for i = 2,3, . . . , l . If m exists for two processes P,Q and l ≥ 1 in E , then we say that P reaches Q

in E .

If ml arrives at Q at time t or earlier and m is the earliest sequence of messages for P (according

to t) to reach Q in E , then we say that P has reached Q at time t in E .9

By Definition 3, if a process P reaches another process Q, it is possible that, by a sequence of

messages, P backs up P ’s vote at Q. The intuition of the lower bound in question, captured by

Lemma 1 below, is then that (the arrival of) the messages by which P backups P ’s vote precede

(the departure of) the message after the reception of which P decides.

9The time t mentioned in Definition 3 is only for convenience of our proof: the time is assumed to be an
accurate global clock, but no process necessarily has access to the global clock.

17

Chapter 2. The Complexity of Distributed Transaction Commit

Lemma 1 (Backups). Let π be any protocol that solves NBAC in every crash-failure execution

and ensures agreement in every network-failure execution. Let E be any nice execution of π.

Let P decide at time t1 in E. Among the messages whose destination is P, let M be the set of

messages that arrive at P before or at t1. For each m ∈M , let tm be the time at which m leaves

from its source and let t2 = maxm∈M tm.

Then at t2, P has reached at least f processes.

Proof. By contradiction. Suppose that at t2, P has reached at most f −1 processes. To show a

contradiction, we first construct a crash-failure execution E0 where these f −1 processes as well

as P (denoted by Φ) crash and every correct process R decides 0. We then construct a network-

failure execution Eas ync that is indistinguishable from E to P , and also indistinguishable from

E0 to R; then P and R decide differently in Eas ync , which breaks agreement, contradictory to

the definition of π.

We first construct E0. For any process Q ∈Φ\{P }, denote by τQ the time at which P reaches

Q in E . In E0, P crashes at time 0 (before sending any message). For Q, E0 is the same as E

until Q crashes at τQ (before possibly notifying P ’s crash). Let P propose 0, let every process

other than P propose 1 and let no process in Ω\Φ crash. Then as |Φ| ≤ f , E0 is a legitimate

crash-failure execution. Let R be the earliest correct process that decides. Denote by t3 the

time at which R decides. Since π solves NBAC in every crash-failure execution, R decides 0 in

E0.

We then build Eas ync based on E and E0. In Eas ync , every process proposes 1 and no process

crashes. We construct Eas ync such that Eas ync starts as E and:

a. Every message from P to a process in Ω\Φ arrives later than max(t1, t3);

b. Every message from Q to a process in Ω\Φ sent after or at time τQ arrives later than

max(t1, t3);

c. Every message sent after t2 to a process in Φ arrives later than t1 at the process.

Delays in (a) and (b) ensure that Eas ync is the same as E0 for R before R decides: any process

in Φ seems to have crashed. Delays in (c) ensure that Eas ync and E are indistinguishable for P

before P decides: those messages and only those messages in M arrive for P ’s decision.

Lemma 1 additionally shows that for P ’s vote, at least f backups are necessary. Using Lemma

1, we now prove the necessary number of message delays in Theorem 1.

Proof. (Proof of the second part of Theorem 1.) Let t2 be defined as in Lemma 1 for the earliest

process P that decides in any nice execution. Then for f ≥ 1, by Lemma 1, at t2, at least one

message from P must have arrived while another message just leaves from its source for P .

This, in total, gives at least two message delays before any process decides.

18

2.3. Lower Bounds

2.3.2 Messages

As shown in Table 2.1, there are four possibilities for the lower bound on the number of

messages: 0, n −1+ f , 2n −2 and 2n −2+ f . We group the cells in Table 2.1 with the same

value, and then prove the lower bound for the least robust atomic commit in each group. Thus

we need only to prove lower bounds for four cells in Table 2.1: (�, �), (V, �), (V, V), and (AVT, A)

respectively, as summarized in Theorem 2. While proving our lower bounds, we highlight the

intuition behind the increasing lower bounds (from 0 to 2n −2+ f), and a tradeoff between

time and message complexity (for the 14 variants of the atomic commit problem that have

n −1+ f messages or 2n −2 messages as lower bounds).

Theorem 2 (Lower bounds on messages). Let P1 and P2 be two subsets of P = {agreement,

validity, termination}. Let π be any protocol that (a) solves NBAC in every failure-free execution,

(b) satisfies P1 in every crash-failure execution and (c) satisfies P2 in every network-failure

execution. Let m be the smallest number of messages among all nice executions of π. If for

π, P1 = P2 = �, then m ≥ 0. If for π, P1 = {validity} and P2 = �, then m ≥ n − 1+ f . If

for π, P1 = P2 = {validity}, then m ≥ 2n − 2. If for π, P1 = P and P2 = {agreement}, then

m ≥ 2n −2+ f .

The proof of 0 message for the cell (�, �) is trivial and omitted. In what follows, we count the

number of necessary messages in the other three cases separately.

Lower bound of n−1+ f messages. We generalize here the lower bound of 2n−2 messages for

synchronous NBAC from Dwork and Skeen [1]. As in their proof, we first present a preliminary

lemma, Lemma 2, which we phrase here in terms of “process reachability”. As Lemma 2 is a

(straightforward) generalization of the preliminary lemma in Dwork and Skeen’s proof, the

proof of Lemma 2 is omitted.10

Lemma 2 (Validity despite crashes). Let π be any protocol that (a) solves NBAC in every failure-

free execution and (b) ensures validity in every crash-failure execution. Then in any nice

execution of π, every process reaches at least f processes.

Lemma 2 captures the intuition that at least f backups are necessary in the face of at most f

crashes. This leads to n −1+ f messages as the lower bound for cell (V, �): by Lemma 2, every

process has to reach at least f processes in every nice execution, and thus at least n −1+ f

messages have to be exchanged.

10We note, however, that the original preliminary lemma in [1] does not distinguish between the necessity of
sending a message (before a certain point in time) and the necessity of receiving a message (before a certain point
in time). It is thus only appropriate for a crash-failure execution (as after a message m is sent, it is predictable that
m is received within some time period) and does not apply, as is, to the setting of a network-failure execution as
we study in this chapter. Hence the need to rephrase the preliminary lemma.

19

Chapter 2. The Complexity of Distributed Transaction Commit

Lower bound of 2n −2 messages. Before counting the number of necessary messages for cell

(V, V), we introduce a preliminary lemma.

Lemma 3 (Validity in every execution). Let π be any protocol that (a) solves NBAC in every

failure-free execution and (b) ensures validity in every network-failure execution. Then in every

nice execution of π, for any process Q, every other process P reaches Q before or when Q decides.

Proof. By contradiction. Consider a nice execution E with two processes P and Q such that P

has not reached Q when Q decides 1. In E , let Q decide at time t ; let Φ be the set of processes

which P has reached before or at t ; for every R ∈ Φ, let τR be the time at which P reaches

R. To show a contradiction, we construct a network-failure execution Eas ync such that P

crashes before sending any message and P votes 0, but for Q, Eas ync is indistinguishable from

E (where Q decides 1). In Eas ync , every process (except P) votes 1; for them, Eas ync starts as

E . In addition, for every R ∈Φ, every message from R sent at or after τR arrives later than t .

Since in E , Q does not expect any message from R sent at or after τR and Q does not expect

any message from P either, then Q does not distinguish E and Eas ync and thus decides 1 at t

again in Eas ync , which violates validity.

By Lemma 3, now every process P must know every vote explicitly, while in Lemma 2, some

process Q’s vote of 1 may be implicit (i.e., in a nice execution, P knows Q’s vote of 1 by not

receiving a certain message). The requirement of explicit votes clearly adds extra messages,

due to the validity satisfied in every network-failure execution. For cell (V, V), we count the

number of necessary messages as follows. Let R be the latest process that decides in a nice

execution. By Lemma 3, before or when R decides, for any process Q, every process P �=Q has

reached Q. As a result, before or when R decides, at least 2n −2 messages are exchanged.

We note that for atomic commit problems with n −1+ f messages and 2n −2 messages as

lower bounds, the lower bound on the number of message delays is 1. It is easy to show that

the lower bound on the number of messages and that on the number of message delays cannot

achieved at the same time: all those problems feature validity at least in every crash-failure

execution and thus a 1-delay protocol must use at least n(n −1) messages. This shows that

for those problems (14 cases among totally 27 ones which we consider), there is a tradeoff

between the number of messages and that of message delays. (Later in Section 5, we show

tradeoffs between time and message complexity for other 4 cases related to indulgent atomic

commit.)

Lower bound of 2n −2+ f messages. Before counting the number of necessary messages for

cell (AVT, A), we again introduce a preliminary lemma.

Lemma 4 (Agreement in every execution). Assume f ≥ 2. Let π be any protocol that solves

NBAC in every crash-failure execution and ensures agreement in every network-failure execution.

Let E be any nice execution. Let P decide at time t1 in E. Among the messages whose destination

20

2.4. Matching Protocols

is P, let MP be the set of messages that arrive at P before or at t1. For each m ∈MP , let tm,P be

the time at which m leaves from its source and t2,P = maxm∈MP tm,P .

Then at t2,P in E, every process has reached at least f −1 processes.

Let Π denote the class of protocols considered in Lemma 4 above. This is the same class of

protocols considered in Lemma 1. The proof of Lemma 4 is actually similar to that of Lemma

1, and thus omitted.

By the robust relation, Π is incomparable with the class of protocols considered in Lemma

3 (with 2n −2 messages as the lower bound) but is more robust than the class of protocols

considered in Lemma 2 (with n−1+ f messages as the lower bound). We highlight the increase

from n −1+ f messages to the lower bound of Π due to the improvement of robustness. To

do so, we actually compare Lemma 1 (which considers also Π) with Lemma 2. Although both

lemmas show that P backups at (at least) f processes, Lemma 1 demonstrates that for Π, after

P backups, it is necessary for some message to leave for P , which increases the number of

necessary messages.

We use Lemma 4 to count the exact number of necessary messages for cell (AVT, A). Let t2,P be

defined as in the statement of Lemma 4 for any process P in any execution. Let t2 = minP∈Ω t2,P .

Then at and after t2, at least n messages have to leave their sources respectively. Since at

t2, every process has reached at least f −1 processes, then before or at t2, at least n −2+ f

messages have arrived at their destinations respectively. Therefore, at least 2n−2+ f messages

are exchanged in every nice execution.

2.4 Matching Protocols

In this section, we prove the tightness of the lower bounds by presenting matching commit

protocols. For each protocol, we describe first its nice executions, and then sketch the exe-

cutions that deviate from nice executions due to some vote of 0 or failure. We include full

protocols and their proofs of correctness for completeness. We present matching protocols for

the number of message delays and the number of messages separately.

2.4.1 Delay-optimal protocols

Recall that in Table 2.1, there are two possibilities for the lower bound on the number of

message delays: 1 and 2. Recall also that there are four cells in Table 2.1 of which the lower

bound is 2: (AVT, A), (AVT, AV), (AVT, AT), and (AVT, AVT), among which the last one is the

most robust. The rest of the non-empty cells correspond to a lower bound of 1 delay, among

which (AV, AV), (AT, AT) and (AVT, VT) are three local maximum by the relation of robustness.

Thus we need only to present delay-optimal protocols for four cells, as summarized in Table

2.2 as well as in Theorem 3.

21

Chapter 2. The Complexity of Distributed Transaction Commit

Table 2.2 – Delay-optimal Protocols. 1NBAC is a synchronous NBAC protocol. Each protocol
achieves its lower bound in every nice execution.

Cell AV, AV AT, AT AVT, VT AVT, AVT
Protocol avmNBAC 0NBAC 1NBAC INBAC

Theorem 3 (Delay-optimal protocols). Let P1 and P2 be any two subsets of P = {agreement,

validity, termination}. Let π be any protocol that (a) solves NBAC in every failure-free execution,

(b) satisfies P1 in every crash-failure execution and (c) satisfies P2 in every network-failure

execution. Let d be the smallest number of message delays among all nice executions of π.

If d = 1, then it is possible that P1 = P2 = {agreement, validity}, or P1 = P2 = {agreement,

termination}, or P1 = P and P2 = {validity, termination}. If d = 2, then it is possible that

P1 =P2 =P .

Among the protocols of Table 2.2, INBAC solves what we call indulgent atomic commit, which

we will discuss in Section 2.5 separately. 0NBAC is an optimal protocol also for the number

of messages, which we will discuss with other message-optimal protocols. For avmNBAC is

similar to 1NBAC, we only sketch the former.

Protocol sketches

1NBAC. During a failure-free execution of 1NBAC, a process (a) sends its vote to every process,

(b) collects all n votes, (c) sends the logical AND of all n votes to every process, and then (d)

decides. Thus in every failure-free execution (as well as in every nice execution), every process

decides the logical AND of all n votes within one message delay.

In other executions, every process starts by sending its vote to every (other) process, but then

since failures may occur, a process P may collect fewer than n votes at the end of the first

message delay. If so, P waits for the logical AND of all n votes sent by another process for

one message delay. (This is the key to agreement in any crash-failure execution, since in a

crash-failure execution, if some process Q decides at step (d), then Q’s messages sent at step

(c) must arrive at their receivers in one message delay.) Denoted by [D, d] a message that

contains the logical AND, d , of all n votes. If P receives any [D, d] before or at the end of the

second message delay, then P proposes d to consensus uc; otherwise, P proposes 0 to uc.

(Recall the definition of consensus in Section 2.2.) Then P decides the same as uc.

avmNBAC. As 1NBAC, avmNBAC starts by having every process send its vote to every other

process. Unlike 1NBAC, avmNBAC does not require termination if a failure occurs; thus every

process decides if and only if it collects all the votes at the end of the first message delay. The

full description of avmNBAC, which is similar to that of 1NBAC, is omitted.

22

2.4. Matching Protocols

Full protocol

1NBAC.

The pseudo code of the full protocol here (as well as all the other protocols described in this

chapter) uses the following assumptions and notations if not explicitly stated otherwise. (a)

We assume that every process knows its own ID stored in the local variable i of that process.

(b) We assume that a message delivery event has a higher priority than a timeout event; i.e., if

both events occur at a process at the same time, the process is first triggered by the delivery

event and then the timeout event. (c) Sometimes a process is triggered by both the delivery

of some message m and a logical condition �; we assume that if m arrives earlier than when

� is satisfied, then m (as well as the delivery of m) is queued to wait for the satisfaction of �.

(d) If a protocol is designed to satisfy some properties in every crash-failure execution, then

we use timers in the protocol and assume that one unit at the timer at every process is set to

the known upper bound of the message delay of the given crash-failure system. (Clearly, in a

network-failure execution of the protocol, message delays might violate the upper bound, and

as a result, although the timer timeouts, a process does not necessarily receive the message

which it sets the timer to wait for.) (e) The timer starts at time 0 when every process proposes

its value (if we do not say otherwise explicitly).

Here we present 1NBAC that (a) solves NBAC in every crash-failure execution, (b) satisfies

validity and termination in every network-failure execution and (c) decides in one message

delay in every nice execution. Algorithm 1 presents the full protocol.

Proof. (Proof of correctness of 1NBAC.)

Termination. Every correct process proposes a value and sets a timer when phase = 0. When

the timer timeouts, every correct process either decides, or sets again the timer and assigns

phase = 1. When the timer timeouts again, the correct process proposes a value to uc. Thus,

by the termination property of consensus, every correct process decides.

Commit-Validity. If process P decides 1, then by the validity property of consensus and the

protocol itself, there exists process Q (not necessarily P) who sends [D, 1] in phase 0 and

therefore every process proposes 1. Thus, the commit-validity property is satisfied.

Abort-Validity. If process P decides 0, then either some process P decides 0 in phase 0, which

implies that some process proposes 0, or by the validity property of consensus, some process

Q proposes 0 to uc in phase 1, which implies that some process proposes 0 or Q receives fewer

than n messages in phase 0. The latter shows that a failure occurs. Thus, the abort-validity

property is satisfied.

23

Chapter 2. The Complexity of Distributed Transaction Commit

Algorithm 1 Algorithm 1NBAC

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.
UniformConsensus, instance uc.

upon event <1nbac, Init> do
phase := 0;
proposed := FALSE;
decided := FALSE;
decision := ⊥;
collection0 := �;
collection1 := �;

upon event <1nbac, Propose | v> do
decision := v;
forall q ∈ Ω do

trigger <pl, Send | q, [V, v]>;
set timer to 1;

upon event <pl, Deliver | p, [V, v]> do
collection0 := collection0 ∪ {p};
decision := decision AND v;

upon event <timer, Timeout> and phase = 0 do
if collection0 = Ω then

forall q ∈ Ω do
trigger <pl, Send | q, [D, decision]>;

if not decided then
decided := TRUE;
trigger <1nbac, Decide | decision>;

else
phase := 1;
set timer to 2;

upon event <pl, Deliver | p, [D, d]> do
collection1 := collection1 ∪ {p};
decision := d;

upon event <timer, Timeout> and phase = 1 do
if not decided then

if collection1 = � then
decision := 0;

proposed := TRUE;
trigger <uc, Propose | decision>;

24

2.4. Matching Protocols

upon event <uc, Decide | d> do
if not decided then

decided := TRUE;
trigger <1nbac, Decide | d>;

Table 2.3 – Message-optimal Protocols. Protocol (n-1+f)NBAC is a synchronous NBAC protocol.
Each protocol achieves its lower bound in every nice execution.

Cell AT, AT AVT, T AV, A AVT, VT AV, AV AVT, AVT
Protocol 0NBAC (n-1+f)NBAC aNBAC (2n-2)NBAC 2PC (2n-2+f)NBAC

Agreement. By contradiction. Suppose that two different processes P and Q decide 1 and

0 respectively, in a crash-failure execution. Then by the commit-validity property and the

abort-validity property, every process proposes 1 and some process crashes before Q decides.

By the agreement property of consensus in a crash-failure execution, P and Q cannot both

follow the decision of uc to decide. Thus P decides 1 in phase 0 and Q decides 0 as a decision

of uc.

Since P decides in phase 0, P succeeds in sending [D,1] to every other process. Moreover, since

every process proposes 1 to 1nbac, no process sends [D,0] after the first message delay. Thus

thanks to the synchronous communication, every process that has not decided yet receives

[D,1] and proposes 1 to uc. Thus by the validity property of consensus, Q cannot decide 0 as

a decision of uc. A contradiction.

2.4.2 Message-optimal protocols

As shown in Table 2.1, there are four lower bounds on the number of message delays: 0,

n −1+ f , 2n −2, and 2n −2+ f . Similarly, we group the cells of which the lower bound takes

the same value in Table 2.1, and find the most robust one or the local maximum in each group.

Thus we need only to present message-optimal protocols for six cells, as summarized in Table

2.3 as well as in Theorem 4. Among these cells, cell (AV , AV) has 2n −2 as a lower bound on

the number of messages and hence the classical protocol, 2PC, is a matching protocol, for

which we do not need to propose a new one.

Theorem 4 (Message-optimal protocols). Let P1 and P2 be any two subsets of P = {agreement,

validity, termination}. Let π be any protocol that (a) solves NBAC in every failure-free execution,

(b) satisfies P1 in every crash-failure execution and (c) satisfies P2 in every network-failure

execution. Let m be the smallest number of messages among all nice executions of π. If m = 0,

then it is possible that P1 =P2 = {agreement, termination}. If m = n −1+ f , then it is possible

that P1 = {agreement, validity} and P2 = {agreement}, or P1 = P and P2 = {termination}.

If m = 2n −2, then it is possible that P1 = P2 = {agreement, validity}, or P1 = P and P2 =
{validity, termination}. If m = 2n −2+ f , then it is possible that P1 =P2 =P .

25

Chapter 2. The Complexity of Distributed Transaction Commit

Below we sketch only 0NBAC, (n-1+f)-NBAC, and (2n-2)NBAC, since aNBAC and (2n-2+f)NBAC

are close to (n-1+f)NBAC. The full descriptions of the protocols (and their full proofs of

correctness) cover all message-optimal protocols (except for 2PC). As shown in the sketches

below of the three protocols, 0NBAC, (n-1+f)NBAC, and (2n-2)NBAC, the primary technique to

achieve an optimal number of messages is to support nice executions by complex executions

that abort; namely, processes take complex steps before a decision of 0: they try to inform

every other of this decision.

Protocol sketches

0NBAC. During every nice execution, no process sends a message, and after one message

delay, a process (who votes 1) decides 1 if it has received no message. In other executions, a

process who votes 1 still sends no message at the beginning, while a process who votes 0 sends

[V, 0] to every (other) process. Then after one message delay, n processes are divided into three

categories: (1) those who vote 0, (2) those who vote 1 and receive [V, 0], and (3) those who vote

1 but do not receive any message. The last category decides 1 again immediately, while the

other two later propose a value to consensus i uc (and decide the same as i uc). The second

category now sends [B, 0] to every other process. Any receiver of [*, 0] who has not decided yet

acknowledges to the sender. If a process in category (1) or (2) receives n−1 acknowledgements,

then it proposes 0 to i uc , and otherwise, 1. Clearly, both categories (1) and (2) may potentially

decide 0 and thus they try to inform the others of this decision. The key to agreement here

is to agree with the last category which may have already decided 1 (at the end of the first

message delay). However, since by the protocol, the third category does not acknowledge to

[*, 0], if the third category is non-empty, then all other processes must propose 1 to i uc and

decide 1, satisfying agreement.

For best-case complexity, it is easy to see that in every nice execution, no message is ever

sent, and furthermore, every process decides after one message delay. 0NBAC achieves the

lower bound on the number of messages and that on the number of message delays at the

same time. As a result, for the 9 cases (among 27 cases) covered by this protocol (using the

robustness relation), no tradeoff is necessary.

(n-1+f)NBAC. During every nice execution of this protocol, the communication steps among

processes are totally ordered. The totally-ordered sequence is: P1, P2, . . . ,Pn and subsequently

P1,P2, . . . ,P f . Then (a) P1 starts by sending P1’s vote to P2; (b) each process in the sequence,

upon receiving its predecessor’s message, sends the collection of the votes so far to its successor

except P f which is at the end of the sequence; (c) (after n −1+ f steps above) every process

waits (i.e., does no-ops) for f +1 message delays; and (d) during step (c), a process does not

receive any message and thus decides 1.

In other executions, for any process P , if P votes 0, then P sends no message to the successor

(when P first occurs in the sequence). If P does not receive its predecessor’s message, then P

26

2.4. Matching Protocols

sends no message to its successor as well except that P is in the suffix Pn ,P1,P2, . . . ,P f . In the

suffix, if P does not receive its predecessor’s message or receives 0 from its predecessor, then P

sends 0 to every other process. Subsequently, if any process receives a message of 0, then the

process sends 0 as well to every other process. Every process decides at the same time as in a

nice execution (i.e., step (d) in a nice execution). At the end, if a process has ever received a

message of 0, then it decides 0 (and 1 otherwise).

The number of messages in any nice execution is thus n −1+ f , matching the lower bound.

To match the lower bound, in any nice execution, some process P decides 1 without being

reached by every process: some votes of 1 are only implicit to P . In (n-1+f)NBAC, the decision

at step (d) ensures that those who accept implicit votes (as votes of 1) can be notified of a

decision of 0 in the face of at most f crashes in any crash-failure execution.

(2n-2)NBAC. During every nice execution, (a) every process sends its vote to Pn spontaneously,

(b) then Pn sends the logical AND of all n votes to every process, and (c) every process waits

for f +1 message delays, and then decides 1. When a failure occurs or some process votes 0, at

step (b), Pn sends 0 to every process. Then at step (c), a process can receive no message from

Pn or a message of 0 from Pn . If so, the process sends 0 to every process. Later, any process

who receives a message of 0 also sends 0 to every process. Every process decides at the same

time as in a nice execution (i.e., the end of step (c) in a nice execution). At the end, if a process

has ever received a message of 0, it decides 0 (and 1 otherwise).

The number of messages in any nice execution is thus 2n −2. Similar to (n-1+f)NBAC, here

any process who decides 0 tries to inform every other process before the decision, while

the decision at the end of step (c) ensures that at least one process succeeds in notifying

every correct process of the potential decision of 0 in every crash-failure execution, to satisfy

agreement.

Full protocols

0NBAC. Here we present our 0NBAC protocol in Algorithm 2. For 0NBAC, every failure-free

execution solves NBAC, every network-failure execution satisfies agreement and termination,

and n processes exchange 0 message in every nice execution.

Proof. (Proof of correctness of 0NBAC.)

Termination. Every correct process P proposes a vote v and sets t i mer to 1. Then when

t i mer first timeouts, P either decides, or again sets t i mer . At the second timeout of t i mer ,

every correct process (which has not yet decided) proposes to i uc, which eventually decides

by the termination property of i uc in a network-failure execution.

27

Chapter 2. The Complexity of Distributed Transaction Commit

Algorithm 2 Algorithm 0NBAC

Uses:
PerfectPointToPointLinks, instance pl.
UniformConsensus, instance iuc.
Timer, instance timer.

upon event <0nbac, Init> do
myvote := ⊥;
myack := �;
decided := FALSE;
zero := FALSE;
phase := 0;

upon event <0nbac, Propose | v> do
myvote := v ;
if v = 0 then

forall q ∈ Ω do
trigger <pl, Send | q, [V, 0]>;

set timer to time 1;
phase := 1;

upon event <pl, Deliver | p, [V, v]> and phase = 1 do
zero := TRUE;
trigger <pl, Send | p, [ACK]>;

upon event <pl, Deliver | p, [B, b]> and phase = 2 do
if not (myvote = 1 and decided) then

trigger <pl, Send | p, [ACK]>;

upon event <pl, Deliver | p, [ACK]> do
myack := myack ∪ {p};

upon event <timer, Timeout> and phase = 1 do
phase = 2;
if zero = FALSE and myvote = 1 then

decided := TRUE;
trigger <0nbac, Decide | 1>;

else if zero = TRUE and myvote = 1 then
forall q ∈ Ω do

trigger <pl, Send | q, [B, 0]>;
set timer to time 3;

else
set timer to time 2;

28

2.4. Matching Protocols

upon event <timer, Timeout> and phase = 2 do
if myack ⊂ Ω then

trigger <iuc, Propose | 1>;
else

trigger <iuc, Propose | 0>;

upon event <iuc, Decide | d> and not decided do
trigger <0nbac, Decide | d>;
decided := TRUE;

Commit-Validity. We only need to prove validity in every failure-free execution. If in a failure-

free execution, a process P decides 1, then either P decides 1 at the first timeout or P decides

the decision of consensus i uc. If P decides at the first timeout, then P does not receive any

message [V, 0], which implies that every process proposes 1. If P decides the decision of i uc,

then some process Q proposes 1 at Q’s second timeout. Either Q’s vote is 0 or Q receives a

message [V, 0] before the first timeout. In either case, message [V, 0] is sent to all process when

the local variable phase at every process is 1. Then in a failure-free execution, no process

decides at the first timeout. However, for Q to propose 1, again in a failure-free execution,

there must be some process R such that R’s vote is 1 and R has decided at the first timeout,

which leads to a contradiction. Therefore P cannot decide the decision of i uc in a failure-free

execution. As a result, P can only decide at the first timeout and every process proposes 1,

which satisfies commit-validity.

Abort-Validity. We only need to prove validity in every failure-free execution. If a process P

decides 0, then some process Q has proposed 0 to i uc. Then Q has votes 0 or has received a

vote of 0, which satisfies the abort-validity property.

Agreement. By contradiction. Suppose that E is a network-failure execution in which two

processes P and Q decide differently. W.l.o.g., P decides 1 and Q decides 0. By the agreement

property of consensus, Q’s decision must be a decision of i uc while P ’s decision is not. Then

some process R must have proposed 0 to i uc. As a result, R has t i mer timeout twice at

itself. Suppose that the vote of R to the commit protocol is 0. Then the second timeout is

at time 2. We argue that R cannot receive P ’s acknowledgement of R’s message [V ,0] at the

second timeout. If R can, then P ’s local variable zer o turns true before P ’s first timeout, which

contradicts to P ’s decision of 1. Thus, the vote of R to the commit protocol can only be 1, and

R’s second timeout is at time 3. Similarly, we argue that R cannot receive P ’s acknowledgement

of R’s message [B ,0] at the second timeout. If R can, then P ’s local variables phase = 2 and

deci ded = FALSE must hold when P sends the acknowledgment, which again contradicts to

P ’s decision of 1 (without invoking i uc).

29

Chapter 2. The Complexity of Distributed Transaction Commit

Message-optimal protocol for synchronous NBAC: (n-1+f)NBAC. We present the full proto-

col in Algorithm 3. Hereafter we use the following notation convention: symbol %n represents

modulo n except that if the remainder is 0, the result of % is n instead of 0. The terminology of

the timer is slightly different from the other protocols: the timer here starts at time 1 when the

first sending event happens.

Proof. (Proof of correctness of (n-1+f)NBAC.)

Termination. When a process proposes a value or its local t i mer timeouts, it assigns a value

to phase. Each time a process assigns a value to phase, it sets a timer. Since every correct

process proposes a value, then every correct process enters phase 3 and has t i mer timeout at

n +2 f +1. Every correct process decides at n +2 f +1.

Commit-Validity. We only need to prove validity in every crash-failure execution. If process

P decides 1, then at time n +2 f +1, P ’s local variable deci si on = 1. This leads to three facts:

(a) that P has received no 0 from other processes; (b) that P ’s local variable del i ver ed is

TRUE when the timeout event for phase 1 (and if P is among P1,P2, . . . ,P f , P ’s local variable

del i ver ed is TRUE when the timeout event for phase 2 occur at P); and (c) that P proposes 1.

If P is among P1,P2, . . . ,P f , then according to (b), P has received 1 at phase 2, which implies

that every process proposes 1. If P is Pn , then according to (b), P has received 1 at phase 1,

which implies that every process proposes 1. If P is not among P1,P2, . . . ,P f ,Pn , then accord-

ing to (a), P does not receive 0 from Pn ,P1, . . . ,P f at time n +1, . . . ,n + f +1 respectively. Since

at most f processes can crash, one process Q among Pn ,P1, . . . ,P f is instructed by the protocol

to not send 0 to P . This implies that Q has received 1 at phase 2 if Q is among P1,P2, . . . ,P f or

Q has received 1 at phase 1 if Q is Pn . Therefore, every process proposes 1.

Abort-Validity. We only need to prove validity in every crash-failure execution. If process P

decides 0, then P ’s local variable deci si on = 0. Then either (a) P has proposed v = 0, or (b)

P has received 0 from other processes, or (c) P ’s local variable del i ver ed is FALSE when the

timeout event for phase 1 or the timeout event for phase 2 occurs at P .

If P receives 0 from another process Q, then since a process only sends its local variable

deci si on to other processes (if it sends any message), w.l.o.g., we may assume that Q is the

earliest process that has local variable deci si on = 0. As a result, either Q has proposed v = 0,

or Q’s local variable del i ver ed is FALSE when the timeout event for phase 1 or the timeout

event for phase 2 occurs at Q.

Then, to examine the abort-validity property, we need only to examine the case where

del i ver ed is FALSE for Q, and case (c) for P . Let Pi be either process. As del i ver ed is

FALSE, Pi does not receive any message from P(i−1)%n before the timeout event for phase

30

2.4. Matching Protocols

Algorithm 3 (n-1+f)NBAC

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.

upon event <nbac, Init> do
decision := ⊥;
decided := FALSE;
delivered := FALSE;
phase := 0;

upon event <nbac, Propose | v> do
decision := v;
if i = 1 then

trigger <pl, Send | P2, decision>;
if i = 1 then

set timer to time n + 1;
phase := 2;

else
set timer to time i;
phase := 1;

upon event <pl, Deliver | p, v> do
decision := decision AND v ;
if phase ≤ 2 then

if p = P(i−1)%n then
delivered := TRUE;

else if not decided then
forall q ∈ Ω do

trigger <pl, Send | q, decision>;

upon event <timer, Timeout> and phase = 1 do
if delivered = FALSE then

decision := 0;
if decision = 1 then

trigger <pl, Send | P(i+1)%n, decision>;
else if i = n then

forall q ∈ Ω do
trigger <pl, Send | q, decision>;

delivered := FALSE;
if i ≥ f + 1 then

set timer to time n +2 f +1;
phase := 3;

else
set timer to time n + i ;
phase := 2;

31

Chapter 2. The Complexity of Distributed Transaction Commit

upon event <timer, Timeout> and phase = 2 do
if delivered = FALSE then

decision := 0;
if decision = 1 and i �= f then

trigger <pl, Send | P(i+1)%n, decision>;
if decision = 0 then

forall q ∈ Ω do
trigger <pl, Send | q, decision>;

delivered := FALSE;
set timer to time n +2 f +1;
phase := 3;

upon event <timer, Timeout> and phase = 3 do
decided := TRUE;
trigger <nbac, Decide | decision>;

1 or the timeout event for phase 2 occurs. At the same time, for 2 ≤ i ≤ n, P(i−1)%n is in-

structed by the protocol to send a message to Pi %n in phase 1 if P1,P2, . . . ,Pi−2 do not crash

and P1,P2, . . . ,Pi−1 propose 1; for i = 1, P(i−1)%n is instructed by the protocol to send a message

to Pi %n in phase 2; and for 2 ≤ i ≤ f , P(i−1)%n is instructed by the protocol to send a message to

Pi %n in phase 2. As del i ver ed is FALSE, then some process crashes or some process proposes

0.

In conclusion, the abort-validity property is satisfied.

Agreement. By contradiction. Suppose that two different processes P and Q decide 1 and

0 respectively in a crash-failure execution. Then by the commit-validity property and the

abort-validity property, every process proposes 1 and some process crashes before Q decides.

Since Q decides 0, then Q’s local variable deci si on is assigned to 0 at some point in phase

1, phase 2, or phase 3. Suppose that Q assigns deci si on to 0 in phase 1. If Q �= Pn , then Q

refuses to send a message, which would lead P to decide 0; if Q = Pn , then Q sends 0 to P ,

which would also lead P to decide 0. A contradiction. Suppose that Q assigns deci si on to 0 in

phase 2, then Q also sends 0 to P , which would again lead P to decide 0. A contradiction.

Suppose that Q assigns deci si on to 0 in phase 3, then Q only does the assignment at time

n+2 f +1 or later. Otherwise, since both P and Q are alive at n+2 f +1, when Q sends deci si on

to P after the assignment, then the network could schedule the message so that P receives

0 before time n +2 f +1 and decide 0 at time n +2 f +1. Now that Q does the assignment at

time n +2 f +1, some process must send 0 to Q at time n +2 f or later. In fact, in order for

Q to receive 0, between time n + f and time n +2 f , there must be at least f +1 process that

try to send 0 to every process. However, those processes all fail to send 0 to P . This gives a

contradiction: f +1 processes must have crashed (to make all those attempts fail) while at

32

2.4. Matching Protocols

most f processes may crash.

aNBAC. The full protocol is presented in Algorithm 4. Similar to (n-1+f)NBAC, the timer is

slightly changed: the timer here starts at time 1 when the first sending event happens. Two

timers are used in the algorithm and identified by different names.

Proof. (Proof of correctness of aNBAC.)

Termination. We only need to prove that a process decides in a failure-free execution. Clearly,

a process proposes a vote before or at time 1. If every process proposes 1, then every process

eventually timeouts at time n +2 f +1, and noop is never assigned to TRUE. In a failure-free

execution, every process has their local variable del i ver ed to be TRUE at their timeout. As a

result, at time n +2 f +1, every process decides 1. Otherwise, if some process votes 0, then

every process who votes 0 timeouts at time 3 and decides while every process who votes 1

timeouts eventually at time 4 and also decides, Thus every process decides in a failure-free

execution.

Commit-Validity. We only need to prove validity in every crash-failure execution. If process P

decides 1, then P decides at time n +2 f +1 when P ’s local variable deci si on = 1 and noop is

FALSE. Since deci si on = 1, this leads to three facts: (a) that P has received no 0 from other

processes; (b) that P ’s local variable del i ver ed is TRUE when the timeout event for phases 1

or 2 occurs at P ; and (c) that P proposes 1. If P is Pn , then according to (b), P has received 1

at phase 1, which means that the logical AND of all votes is 1 and every process proposes 1.

If P is among P1,P2, . . . ,P f , then according to (b), P has received 1 at phase 2, which implies

that every process proposes 1. If P is not among P1,P2, . . . ,P f ,Pn , then according to (a), P

does not receive 0 from Pn ,P1, . . . ,P f at time n +1, . . . ,n + f +1 respectively. Since at most f

processes can crash, at least one process Q among Pn ,P1, . . . ,P f is instructed by the protocol

to not send 0 to P . This implies that Q has received 1 at phase 2 if Q is among P1,P2, . . . ,P f or

Q has received 1 at phase 1 if Q is Pn . Therefore, every process proposes 1.

Abort-Validity. We only need to prove validity in every crash-failure execution. If process

P decides 0, then P only decides 0 at time 3 or at time 4. Then P either has voted 0, or has

received a vote of 0 from some other process. Therefore, the abort-validity property is satisfied.

Agreement. By contradiction. Suppose that two different processes P and Q decide 1 and 0

respectively, in a network-failure execution. Then P decides at time n +2 f +1 and Q decides

at time 3 or at time 4.

33

Chapter 2. The Complexity of Distributed Transaction Commit

Algorithm 4 aNBAC

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.
Timer, instance timer0.

upon event <anbac, Init> do
decision := ⊥;
decided := FALSE;
delivered := FALSE;
phase := 0;
vote := ⊥;
delivered_V := FALSE;
collection_V := �;
collection_B := �;
noop := FALSE;
phase0 := 0;

upon event <anbac, Propose | v> do
decision := v;
vote := v;
if i = 1 then

trigger <pl, Send | P2, decision>;
if i = 1 then

set timer to time n + 1;
phase := 2;

else
set timer to time i;
phase := 1;

if v = 0 then
forall q ∈ Ω do

trigger <pl, Send | q, [V, 0]>;
set timer0 to time 3;

else
set timer0 to time 2;

upon event <pl, Deliver | p, [V, 0]> do
decision := 0;
delivered_V := TRUE;
trigger <pl, Send | p, [ACK, V]>;

upon event <pl, Deliver | p, [B, 0]> do
decision := 0;
trigger <pl, Send | p, [ACK, B]>;

34

2.4. Matching Protocols

upon event <timer0, Timeout> and vote = 1 and delivered_V and phase0 = 0 do
forall q ∈ Ω do

trigger <pl, Send | q, [B, 0]>;
set timer0 to time 4;
phase0 := 1;

upon event <pl, Deliver | p, [ACK, V]> do
collection_V := collection_V ∪ {p};

upon event <pl, Deliver | p, [ACK, B]> do
collection_B := collection_B ∪ {p};

upon event <timer0, Timeout> and vote = 0 do
if collection_V = Ω and decided = FALSE then

decided := TRUE;
trigger <anbac, Decide | 0>;

else
noop := TRUE;

upon event <timer0, Timeout> and vote = 1 and delivered_V and phase0 = 1 do
if collection_B = Ω and decided = FALSE then

decided := TRUE;
trigger <anbac, Decide | 0>;

else
noop := TRUE;

upon event <pl, Deliver | p, v> do
decision := decision AND v ;
if phase ≤ 2 then

if p = P(i−1)%n then
delivered := TRUE;

else if not decided then
forall q ∈ Ω do

trigger <pl, Send | q, decision>;

upon event <timer, Timeout> and phase = 1 do
if delivered = FALSE then

decision := 0;
if decision = 1 then

trigger <pl, Send | P(i+1)%n, decision>;
else if i = n then

forall q ∈ Ω do
trigger <pl, Send | q, decision>;

delivered := FALSE;
if i ≥ f + 1 then

set timer to time n +2 f +1;
phase := 3;

35

Chapter 2. The Complexity of Distributed Transaction Commit

else
set timer to time n + i ;
phase := 2;

upon event <timer, Timeout> and phase = 2 do
if delivered = FALSE then

decision := 0;
if decision = 1 and i �= f then

trigger <pl, Send | P(i+1)%n, decision>;
if decision = 0 then

forall q ∈ Ω do
trigger <pl, Send | q, decision>;

delivered := FALSE;
set timer to time n +2 f +1;
phase := 3;

upon event <timer, Timeout> and phase = 3 and not decided do
if decision = 1 and not noop then

decided := TRUE;
trigger <anbac, Decide | decision>;

When Q decides at time t (t = 3 or 4), Q must have received an [ACK, V] or [ACK, B] from each

process before or at t . On the other hand, when P decides, P ’s local variable deci si on is 1,

which means that P has not received any message [B, 0] or [V, 0] before or when P decides.

Since n +2 f +1 ≥ 2+2+1 = 5 > t , P cannot manage to send [ACK, V] or [ACK, B] so that Q

receives the message before or at t . A contradiction.

(2n-2)NBAC. The full protocol is presented in Algorithm 5. As in (n-1+f)NBAC, the timer here

starts at time 1 when the first sending event happens.

Proof. (Proof of correctness of (2n-2)NBAC.) We show that every crash-failure execution of

(2n-2)NBAC solves NBAC. While doing so, we show that every execution of (2n-2)NBAC sat-

isfies validity and termination. Recall that in every crash-failure execution, every message

arrives in time while in an execution, timeouts may be violated.

Termination. Every correct process decides at time 3+ f .

Commit-Validity. In every execution, if a process P decides 1, then at time 3+ f , the local

variable votes is 1. If P = Pn , then at time 2, P must have received all n votes which are all 1. If

P �= Pn , then at time 3, P must have received a message [B, 1] from Pn , which implies that all

36

2.4. Matching Protocols

Algorithm 5 (2n-2)NBAC

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.

upon event <(2n-2)nbac, Init> do
votes := 1;
received_B := FALSE;
phase := 0;
collection := {Pi };

upon event <(2n-2)nbac, Propose | v> do
votes := votes AND v ;
if 1 ≤ i ≤ n −1 then

trigger <pl, Send | Pn, [V, v]>;
set timer to time 3;

else
set timer to time 2;

upon event <pl, Deliver | p, [V, v]> do
votes := votes AND v ;
collection := collection ∪ {p};

upon event <timer, Timeout> and phase = 0 and i = n do
if votes = 1 and collection = Ω then

forall q ∈ Ω do
trigger <pl, Send | q, [B, 1]>;

else
votes := 0;
forall q ∈ Ω do

trigger <pl, Send | q, [B, 0]>;
set timer to time 3+ f ;
phase := 1;

upon event <timer, Timeout> and phase = 0 and 1 ≤ i ≤ n −1 do
if r ecei ved_B = FALSE then

forall q ∈ Ω do
trigger <pl, Send | q, [B, 0]>;

votes := 0;
set timer to time 3+ f ;
phase := 1;

upon event <pl, Deliver | p, [B, v]> do
received_B := TRUE;

37

Chapter 2. The Complexity of Distributed Transaction Commit

votes := v ;
if votes = 0 then

forall q ∈ Ω do
trigger <pl, Send | q, [B, 0]>;

upon event <timer, Timeout> and phase = 1 do
trigger <(2n-2)nbac, Decide | votes>;

processes vote 1.

Abort-Validity. In every execution, if a process P decides 0, then at time 3+ f , the local variable

votes is 0. If P = Pn , then P votes 0, or receives a vote of 0 at time 2, does not receive some

vote at time 2 or receives a message of [B, 0] (but sends a message of [B, 1] at time 2). The last

two imply the crash of some process or the delay of some message. If P �= Pn , then P votes 0,

receives a message of [B, 0] from Pn at time 3, or does not receive any message from Pn at time

3, or receives a message of [B, 0] from some process (but receives a message of [B, 1] from Pn

at time 3). The last two imply the crash of Pn or the delay of some message from Pn . There-

fore, in every execution, if a process decides 0, then some process proposes 0 or a failure occurs.

Agreement. By contradiction. Suppose that E is a crash-failure execution such that two

processes P and Q decide differently. W.l.o.g., P decides 1 and Q decides 0. Then by the

commit-validity property, every process votes 1. If P = Pn , then P has received all votes from

all processes; since P decides at time 3+ f , P manages to send [B, 1] to every process and

then Q should decide 1, which leads to a contradiction. If P �= Pn , then P does not receive any

message [B, 0] and moreover, P receives [B, 1] at time 3 from Pn . Clearly, For Q to decide 0,

Pn must have crashed while sending [B,1] at time 2. (Otherwise, all have received [B,1], none

sends message [B, 0] and then all decide 1. A contradiction.) Now that Pn crashes, Q must

have received message [B, 0] later than time 2+ f . (Otherwise, P would receive a message of

[B, 0] from Q earlier than or at time 3+ f and thus decides 0, which is a contradiction.) Then

between time 2 and time f +2, at least f +1 processes manage to send message [B,0] to some

process and then crash, which contradicts the fact that at most f processes may crash.

(2n-2+f)NBAC. We describe our (2n-2+f)NBAC protocol in Algorithm 6. Here if f − 1 = n,

then the condition f −1 ≤ i ≤ n −1 is never fulfilled no matter what i is (and thus the related

events are never triggered). As (n-1+f)NBAC, we also change the timer slightly from the other

protocols: the timer here starts at time 1 when the first sending event happens.

Proof. (Proof of correctness of (2n-2+f)NBAC.)

38

2.4. Matching Protocols

Algorithm 6 (2n-2+f)NBAC

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.
IndulgentUniformConsensus, instance iuc.

upon event <(2n-2+f)nbac, Init> do
votes := 1;
received_V := FALSE;
received_B := FALSE;
received_Z := FALSE;
phase := 0;
decided := FALSE;
proposed := FALSE;

upon event <(2n-2+f)nbac, Propose | v> do
votes := votes AND v ;
if i = 1 then

trigger <pl, Send | P2, [V, v]>;
set timer to time n +1;
phase := 1;

else
set timer to time i ;

upon event <pl, Deliver | p, [V, v]> and phase = 0 do
votes := votes AND v ;
received_V := TRUE;

upon event <timer, Timeout> and phase = 0 do
if received_V = TRUE then

if i = n then
trigger <pl, Send | P1, [B, votes]>;

else
trigger <pl, Send | Pi+1, [V, votes]>;

else
votes := 0;
if proposed = FALSE then

trigger <iuc, Propose | 0>;
proposed := TRUE;

set timer to time n + i ;
phase := 1;

upon event <pl, Deliver | p, [B, b]> and phase = 1 do
votes := votes AND b;
received_B := TRUE;

39

Chapter 2. The Complexity of Distributed Transaction Commit

upon event <timer, Timeout> and phase = 1 and i = f do
if received_B = TRUE then

trigger <pl, Send | P f +1, [B, votes]>;
if decided = FALSE then

trigger <(2n-2+f)nbac, Decide | votes>;
decided := TRUE;

else
votes := 0;
if proposed = FALSE then

trigger <iuc, Propose | 0>;
proposed := TRUE;

phase = 2;

upon event <timer, Timeout> and phase = 1 and i = n do
if received_B = TRUE then

if decided = FALSE then
trigger <(2n-2+f)nbac, Decide | votes>;
decided := TRUE;

if f ≥ 2 then
trigger <pl, Send | P1, [Z, votes]>;

else
if proposed = FALSE then

trigger <iuc, Propose | votes>;
proposed := TRUE;

upon event <timer, Timeout> and phase = 1 and 1 ≤ i ≤ f −1 do
if received_B = TRUE then

trigger <pl, Send | Pi+1, [B, votes]>;
else

votes := 0;
if proposed = FALSE then

trigger <iuc, Propose | 0>;
proposed := TRUE;

set timer to time 2n + i ;
phase := 2;

upon event <timer, Timeout> and phase = 1 and f +1 ≤ i ≤ n −1 do
if received_B = TRUE then

trigger <pl, Send | Pi+1, [B, votes]>;
if decided = FALSE then

trigger <(2n-2+f)nbac, Decide | votes>;
decided := TRUE;

else
forall q ∈ {P1, P2, . . . , P f , Pn} do

trigger <pl, Send | q, [HELP]>;

40

2.4. Matching Protocols

upon event <pl, Deliver | p, [HELP]> and i = n and
phase = 1 do

trigger <pl, Send | p, [HELPED, votes]>;

upon event <pl, Deliver | p, [HELP]> and 1 ≤ i ≤ f
and phase = 2 do

trigger <pl, Send | p, [HELPED, votes]>;

upon event <pl, Deliver | p, [HELPED, v]> and not proposed do
trigger <iuc, Propose | v>;
proposed := TRUE;

upon event <pl, Deliver | p, [Z, z]> and phase = 2 do
votes := votes AND z;
received_Z := TRUE;

upon event <timer, Timeout> and phase = 2 and 1 ≤ i ≤ f −1 do
if received_Z = TRUE then

if decided = FALSE then
trigger <(2n-2+f)nbac, Decide | votes>;
decided := TRUE;

if f − 1 ≥ i + 1 then
trigger <pl, Send | Pi+1, [Z, votes]>;

else
if proposed = FALSE then

trigger <iuc, Propose | votes>;
proposed := TRUE;

upon event <iuc, Decide | d> and not decided do
trigger <(2n-2+f)nbac, Decide | d>;
decided := TRUE;

Termination. Consider any crash-failure (or network-failure) execution E . In E , every correct

process proposes a vote. For a correct process Pi , i ∈ { f ,n}, the timer eventually timeouts at

time n+ i ; at time n+ i , Pi either decides without invoking i uc in (2n-2+f)NBAC or proposes a

value to i uc . For a correct process Pi , i ∈ {1,2, . . . , f −1}, Pi eventually timeouts at time 2n+i ; at

time 2n + i , Pi decides without invoking i uc or proposes a value to i uc. For a correct process

Pi , i ∈ { f +1, f +2. . . ,n−1}, Pi eventually timeouts at time n+i ; at time n+i , Pi either decides

at time n+i or queries P1,P2, . . . ,P f ,Pn for help. If Pn is correct, then Pn eventually assigns 1 to

phase; if a process in {P1,P2, . . . ,P f } is correct, then the process eventually assigns 2 to phase.

Since at most f processes may crash, then at least one process in {P1,P2, . . . ,P f ,Pn} is correct

and therefore Pi receives at least one message [HELPED, *] and then proposes a value to i uc.

Thus by the termination property of i uc in a crash-failure system (or in a network-failure

system), every correct process decides in E .

41

Chapter 2. The Complexity of Distributed Transaction Commit

Commit-Validity. In every execution, if a process P decides 1, then P ’s decision is either a

decision of i uc or not. If P ’s decision is not a decision of i uc, then P decides its local vari-

able votes = 1 and there are four possibilities for P when P decides: (1) P = P f , phase = 1,

r ecei ved_B is TRUE; (2) P = Pn , phase = 1, r ecei ved_B is TRUE; (3) P ∈ {P f +1,P f +2, . . . ,Pn−1},

phase = 1, r ecei ved_B is TRUE; (4) P ∈ {P1,P2, . . . , P f −1}, phase = 2, r ecei ved_Z is TRUE.

By the protocol, in each of the four possibilities, votes is the logical AND of all n votes and thus

every process proposes 1. If P ’s decision is a decision of i uc, then some process Q proposes

votes = 1 or v = 1 to i uc and therefore there are three possibilities when Q proposes: (1)

Q = Pn , phase = 1, r ecei ved_B is FALSE, r ecei ved_V is TRUE and Q proposes votes; (2)

Q ∈ {P f +1,P f +2, . . . ,Pn−1}, phase = 1, r ecei ved_B is FALSE, Q delivers message [HELPED, v]

from some process p ∈ {P1,P2, . . . ,P f , Pn} and Q proposes v ; (3) Q ∈ {P1,P2, . . . ,P f −1}, phase

= 2, r ecei ved_Z is FALSE, r ecei ved_B is TRUE, r ecei ved_V is TRUE, and Q proposes votes.

By the protocol, in each of the three possibilities, votes or v is the logical AND of all n votes

and thus every process proposes 1.

Abort-Validity. In every execution, if a process P decides 0, then P ’s decision is either a de-

cision of i uc or not. If P ’s decision is not a decision of i uc, then P decides its local variable

votes = 0; since votes is the logical AND of all n votes and thus some process proposes 0.

If P ’s decision is a decision of i uc, then some process Q proposes 0 to i uc. If Q proposes

Q’s local variable votes, then again votes is the logical AND of all n votes and thus some

process proposes 0. If Q proposes v where Q delivers message [HELPED, v] from some process

p ∈ {P1,P2, . . . ,P f ,Pn}, then there are two possibilities when Q proposes to i uc: (1) p = Pn ,

phase = 1, r ecei ved_V is FALSE; (2) p ∈ {P1,P2, . . . ,P f }, phase =2, r ecei ved_B is FALSE. We

note that by the protocol, in every crash-failure execution where no process crashes, neither

(1) nor (2) occurs. As a result, if (1) or (2) occurs, then some process must have crashed or some

message must have been delayed. If Q proposes 0 to i uc, then there are three possibilities

when Q proposes 0 to i uc: (1) Q ∈ {P2,P3, . . . ,Pn}, phase = 0, r ecei ved_V is FALSE; (2) Q

= P f , phase = 1, r ecei ved_B is FALSE; (3) Q ∈ {P1,P2, . . . ,P f −1}, phase = 1, r ecei ved_B is

FALSE. By the protocol, in every crash-failure execution where no process crashes, none of the

three possibilities occurs. As a result, if (1) or (2) occurs, then some process must have crashed

or some message must have been delayed.

Agreement. By contradiction. Suppose that E is an execution such that two processes P and Q

decide differently. W.l.o.g., P decides 1 and Q decides 0. Then by the agreement property of

uniform consensus, at least one of P and Q’s decisions is not a decision of i uc. If P ’s decision

is a decision of i uc, then Q’s decision is not a decision of i uc; however, by the proof of the

commit-validity property above, every process proposes 1 and thus when Q decides, Q’s local

variable votes = 1, which leads to a contradiction. If P ’s decision is not a decision of i uc , then

by the proof of the commit-validity property above, every process proposes 1 and moreover,

42

2.5. Indulgent Atomic Commit

Q’s decision must be a decision of i uc; as a result, some process R proposes 0 or v to i uc.

When P decides, if a process in {P1,P2, . . . ,P f } has not yet crashed, then its local variables

phase = 2, r ecei ved_B is TRUE (when phase is assigned to 2), r ecei ved_V is TRUE (when

phase is assigned to 2); if a process in {P f +1,P f +2, . . . ,Pn} has not yet crashed, then its local

variables phase = 1, r ecei ved_V is TRUE (when phase is assigned to 1). Therefore, R cannot

propose 0 when at R , phase = 0 or 1; since r ecei ved_V and r ecei ved_B can only be assigned

to TRUE by the protocol (except for initialization), no process would send message [HELPED,

0] to R and thus R cannot propose v = 0. As a result, R does not exist, which gives rise to a

contradiction.

2.5 Indulgent Atomic Commit

In this section, we present our INBAC protocol. INBAC solves indulgent atomic commit as

defined below. We believe this protocol to be of practical relevance for it is suited to practical

distributed database systems which are synchronous “most of the time”.

Definition 4 (Indulgent atomic commit). A protocol π solves indulgent atomic commit if it

satisfies the following:

• Every network-failure execution of π solves NBAC.

Indulgent atomic commit is the most robust atomic commit problem in Table 2.1. For this

problem, we show that our INBAC protocol is optimal in the number of message delays, as

well as in the number of messages given that optimal number of message delays. To give

the intuition behind the optimal protocol, we first prove the lower bounds on the number of

messages, and then sketch the optimal protocol. For completeness, we also include the full

protocol and its proof of correctness.

2.5.1 Lower bounds

Recall that we have proven the lower bound on the number of message delays of indulgent

atomic commit in Section 2.3. Here we prove a lower bound on the number of messages

exchanged given two message delays (which is optimal as shown in Theorem 1) during any

nice execution actually for a less robust problem (than indulgent atomic commit), as stated in

the following theorem.

Theorem 5 (Lower bound on messages given fewer than three message delays). Let π be

any protocol that (a) solves NBAC in every crash-failure execution, and (b) satisfies agreement

in every network-failure execution. Let E be any nice execution of π where every message is

transmitted after an exact message delay U . W.l.o.g., E starts at time 0. If every process decides

at or before 2U in E, then at least 2 f n messages are exchanged in E.

43

Chapter 2. The Complexity of Distributed Transaction Commit

Note that for this less robust problem as well as indulgent atomic commit, 2n −2+ f (f ≥ 2)

messages are optimal. Thus Theorem 5 also demonstrates the tradeoff between the number of

messages and that of message delays for this less robust problem, indulgent atomic commit

and other related problems (in total 4 cases out of 27 ones which we consider). As a result,

including our tradeoff results obtained in Section 3, all atomic commit problems with nonzero

messages as lower bounds (in total 18 out of 27 problem variants) highlight a tradeoff between

time and message complexity.

To prove the lower bound of 2 f n messages, we count the number of necessary messages

for each of the n processes. In particular, we show in any nice execution, for any process P ,

there are two non-overlapping sets of f messages, Λ1 and Λ2, such that every message in Λ1

precedes some message in Λ2. To describe the relation between those messages precisely, we

again apply the notion of “process reachability” introduced in Definition 3 and complete the

terminology.

Definition 5 (Reaching a process: complete terminology). Let E be any execution. Let m =
{m1,m2, . . . ,ml } be a sequence of messages in E such that (a) the source of m1 is P , (b) the

destination of ml is Q,Q �= P , (c) the source sr ci of mi is the destination of mi−1 for i =
2,3, . . . , l , and (d) mi leaves from sr ci later than or at the time at which mi−1 arrives at sr ci for

i = 2,3, . . . , l .

Recall that (as defined in Definition 3) if ml arrives at Q at time t or earlier and m is the earliest

sequence of messages for P (according to t) to reach Q in E , then we say that P has reached Q

at time t in E .

For any two processes P and Q, if there are two sequences of messages m1 = m1
1,m1

2, . . . ,m1
l1

and m2 = m2
1,m2

2, . . . ,m2
l2

such that (a) the source of m1
1 and the destination of m2

l2
is P , (b) the

source of m2
1 and the destination of m1

l1
is Q, (c) m2

1 leaves from Q later than or at the time at

which m1
l1

arrives at Q, and (d) m2
l2

arrives at some time t or earlier, then we say that P reaches

Q and subsequently Q reaches P before time t (including t).

More generally, given three processes P , Q and R, if there are two sequences of messages

m1 = m1
1,m1

2, . . . ,m1
l1

and m2 = m2
1,m2

2, . . . ,m2
l2

such that (a) the source of m1
1 is R, (b) the

destination of m2
l2

is P , (c) the source of m2
1 and the destination of m1

l1
is Q, (d) m2

1 leaves from

Q later than or at the time at which m1
l1

arrives at Q, and (e) m2
l2

arrives at some time t or

earlier, then we say that R reaches Q and subsequently Q reaches P before time t (including

t).11

Recall that if a process P reaches another process Q, then it is possible that by a sequence of

messages, P backs up P ’s vote at Q. (Lemma 1 actually captures the intuition of backups.)

Similarly, if P reaches Q and subsequently Q reaches P , then it is possible that by a sequence

of messages, Q acknowledges the backup of P ’s vote at Q. Then Lemma 5 below essentially

11The time t mentioned in Definition 5 is only for convenience of our proof: the time is assumed to be an
accurate global clock, but no process necessarily has access to the global clock.

44

2.5. Indulgent Atomic Commit

says that at least f processes must send acknowledgements that confirm the success of the

backup, which is also the intuition for our proof of lower bound.

Lemma 5 (Quick acknowledgements). Let π be any protocol that (a) solves NBAC in every

crash-failure execution, and (b) satisfies agreement in every network-failure execution. Let E be

any nice execution of π. Let P decide at some time t1 in E. Let Θ be such set of processes that

∀Q ∈Θ, Q satisfies that before t1 (including t1) in E, P reaches Q, and subsequently Q reaches

P. Among the messages whose destination is P, let M be the set of messages that arrive at P

before or at t1. For each m ∈ M , let tm be the time at which m leaves from its source and let

t2 = maxm∈M tm.

If t2 ≤ 2U , then |Θ| ≥ f .

Proof. By contradiction. Suppose that |Θ| ≤ f −1. Denote by Φ the set of P and the processes

which P has reached at t2. According to the definition of Θ and t2, Θ⊆Φ. For each process

Q ∈Θ, denote by τQ the time at which P reaches Q in E . For each process Q− ∈Φ\(Θ∪ {P }),

denote by τQ− the time at which P reaches Q− in E .

We build a crash-failure execution E0 based on E . In E0, P crashes before sending any message.

For Q, E0 is the same as E until Q crashes and Q crashes before sending any message that is

expected to send upon the message(s) received by Q at τQ (i.e., Q crashes at τQ). For every

other process (i.e., a process not in Θ∪ {P }), E0 is the same as E until some process in Θ∪ {P }

timeouts at some process not in Θ∪ {P }.

Now we construct E0 after some process timeouts as follows. First, we consider the earliest

timeout. The earliest timeout occurs at a process in Φ\(Θ∪ {P }). (By Lemma 1, |Φ\{P }| ≥ f .

As |Θ| ≤ f −1, Φ\(Θ∪ {P }) is non-empty.) Let Q−
t i meout ∈Φ\(Θ∪ {P }) be the process at which

the earliest timeout occurs. Denote by t3 at which the earliest timeout occurs. Clearly, t3 >U .

If Q−
t i meout sends any message m1 upon the timeout event, then we assume that m1 arrives

at its destination at time t3 +U . Second, any other message that is different from E due to

the timeout events arrives in a delay similarly, i.e., with the same message delay U . Finally, in

E0, P proposes 0, every other process proposes 1 and no process in Ω\(Θ∪ {P }) crashes. As

|Θ| ≤ f −1, E0 is a legitimate crash-failure execution of π. Any process R ∈Ω\(Θ∪ {P }) decides

0 in E0. W.l.o.g., let R be the earliest process that decides. Denote by t4 the time at which R

decides.

Then based on E and E0, we build a network-failure execution Eas ync . In Eas ync , every process

proposes 1 and no process crashes. Therefore, Eas ync starts as E . Then we construct Eas ync

such that:

• Every message from P to a process in Ω\(Θ∪ {P }) arrives later than max(t1, t4);

• Every message from Q to a process in Ω\(Θ∪ {P }) sent after or at τQ arrives later than

max(t1, t4);

45

Chapter 2. The Complexity of Distributed Transaction Commit

• Every message from Q− to P sent after or at τQ− arrives later than t1.

• Every message sent after t2 to a process in Θ∪ {P } arrives later than t1 at the process.

For every process Q ∈Θ, tQ > τQ . Thus to every process in Ω\(Θ∪ {P }), any process in Θ∪ {P }

seems to crash at the same time as in E0. The first timeout event occurs at the same time

t3 at the same process Q−
t i meout as in E0. Then to every process in Ω\(Θ∪ {P }), Eas ync is

indistinguishable from E0 before and at the first timeout. We let the messages from/to a

process in Ω\(Θ∪ {P }) after the first timeout event be (sent/received) the same as in E0.

Therefore to every process in Ω\(Θ∪ {P }), Eas ync is indistinguishable from E0 before and at t4.

To Q−, Eas ync and E are indistinguishable only before τQ− . After τQ− , Q− can distinguish

between Eas ync and E . There are two possibilities for any Q− to help P in distinguishing

between Eas ync and E : (1) Q− sends a message in Eas ync which Q− does not in E ; and (2) Q−

does not send a message in Eas ync which Q− does in E . For the first possibility, Let m1 be the

message sent in Eas ync . Then m1 is sent after or at max(t3,τQ−). The same message m1 is sent

in E0 according to our construction. If m1 is sent to P , then by our construction, m1 arrives

later than t1; if m1 is sent to any other process, then by our construction of E0, m1 arrives after

or at t3+U and thus the receiver of m1 can only send a message m2 after or at t3+U . As t3 >U ,

t3 +U > 2U ≥ t2; then m1 does not help the receiver of m1 in distinguishing between Eas ync

and E before t2. Hence in the first possibility, Q− cannot help P in distinguishing between

Eas ync and E before and at t1.

For the second possibility, with an abuse of notations, let m1 be the message sent and O be the

receiver of m1 in E . If O = P , then by the definition of Q−, m1 arrives later than t1 in E and does

not belong to M . If O is any oher process, then O can only notice the missing of m1 in Eas ync

after or at t3 +U . As a result, m1 does not help any process other than P in distinguishing

between Eas ync and E before t2. Therefore, following both possibilities, still the same set of

messages as M are received by P before and at t1 in Eas ync and P is unable to distinguish

between Eas ync and E before and at t1.

Now that P is unable to distinguish between Eas ync and E at t1, and R is unable to distinguish

between Eas ync and E0 at t4, P decides 1 at t1 and R decides 0 at t4. As a result, Eas ync is a

network-failure execution of π that does not satisfy the agreement property. A contradiction to

the assumption that π solves indulgent atomic commit.

As the proof of Lemma 5 shows, the sufficient condition in the lemma is non-trivial. In the

proof, it is actually critical that P decides in two or three message delays for f acknowledge-

ments to be necessary. Suppose that P decides slowly instead. Then P could expect a message

from some process R in order to decide so that some process Q− might notice the crash

detection of P (or Q). Q− might report it to P via R , and as a result, P may notice the incorrect

crash detection of itself and wait for others (instead of taking a decision). This also leave an

open question of whether f acknowledgements are necessary if a process decides after more

46

2.5. Indulgent Atomic Commit

than three message delays.

Given Lemma 5, we can go back to our intuition of Theorem 5. As shown in Lemma 5, certain

messages do follow an order in any nice execution and because of the inherent order, there

exist two non-overlapping sets of messages, Λ1 and Λ2, where intuitively Λ1 backs up votes

and Λ2 acknowledges the success of backups, in any nice execution of a 2-delay protocol. We

now prove our Theorem 5, the lower bound on the number of messages.

Proof. (Proof of Theorem 5.) Consider any process P and let t1 be the time at which P decides.

Among the messages whose destination is P , let M be the set of messages that arrive at P

before or at t1. For each m ∈M , let tm be the time at which m leaves from its source and let

t2 = maxm∈M tm . Then t2 =U and t1 = 2U . By Lemma 1, at least f messages leave from P at

time 0, and by Lemma 5, at least f messages arrive at P at time 2U . This, in total, gives at least

2 f n messages during any nice execution.

2.5.2 Optimal protocol: overview

We present here a protocol, which we denote INBAC, and which is delay-optimal as well as

message-optimal given the optimal number of message delays.

We start by looking at what happens in nice executions of INBAC (which actually follows

Lemma 1 and Lemma 5); then we explain in other executions, how INBAC uses an underlying

consensus module to solve agreement. The state transition of a process in both executions

(nice or not) is illustrated in Figure 2.1. For simplicity, for time 2U or earlier in INBAC, every

process sends a message or decides at multiples of U , i.e., at time 0, U or 2U .

Overview of INBAC.

- Nice execution. Every nice execution E of INBAC starts by P1,P2, . . . ,Pn sending their votes

simultaneously. At time 0, every process P sends P ’s vote to f processes. We say that those

f processes are P ’s backup processes. At time U , each of P ’s backup processes sends P ’s vote

back to P as an acknowledgement. INBAC chooses the set BP of P ’s backup processes as

follows: for P ∈ {P f +1,P f +2, . . . ,Pn}, BP = {P1,P2, . . . ,P f }; for P ∈ {P1,P2, . . . ,P f }, BP = {P1,

P2, . . . ,P f +1}\{P }. Clearly, a process may backup more than one vote. In fact, at time U ,

P ’s backup process sends to P a set V of the votes received as an acknowledgement of the

successful backup of each vote in V . (This is a necessary design, which we summarize later

in Lemma 6). Thus at time 2U , P decides if P receives f correct acknowledgements (from

P ’s f backup processes where a correct acknowledgement from process B ∈ BP includes

Q’s vote for all Q such that B ∈BQ). Obviously, in a nice execution, or more generally, in an

execution where messages arrive in time, at 2U , P knows every process’s vote and is able to

decide properly.

47

Chapter 2. The Complexity of Distributed Transaction Commit

Figure 2.1 – State transition after 2U

- Consensus to the rescue. Now in an execution E− in which some process crashes, or some

message is delayed, P can propose a value to consensus (we say that P may cons-propose a

value) and wait for the decision of the consensus. We first explain when P cons-proposes a

value and then explain which value P cons-proposes. Now, at 2U , if P receives at least one

acknowledgement from a process in {P1,P2, . . . ,P f }, then P cons-proposes a value immediately

at 2U . Otherwise, P asks P f +1,P f +2, . . . ,Pn for the acknowledgements which P f +1,P f +2, . . . ,Pn

have received. I.e., processes ask for help for the missing acknowledgements and their cor-

responding votes. To be more specific, if P is a process in {P1,P2, . . . ,P f }, then P can always

cons-proposes a value at 2U in E−. If not and if at 2U , P indeed receives no acknowledgement

from any process in {P1,P2, . . . ,P f }, then P eventually receives acknowledgement messages

from n− f out of n processes and then may cons-propose a value. At the point when P is ready

to cons-propose a value, P looks for every process’s vote in the acknowledgement messages

which P has received so far. If P finds that every process’s vote is 1, then P cons-proposes 1;

otherwise, P cons-proposes 0.

The state transition of P in E and in E− is illustrated in Figure 2.1. We use there the following

notations: AN D denotes the logical AND of those 0’s and 1’s as votes; Y and N are the abbre-

viated for yes and no respectively; sel f denotes P , the process in question; ack denotes an

acknowledgement; cons denotes consensus (which is not invoked if no process crashes and

every message arrives in time).

Some remarks on the protocol are in order. Clearly, the strategy of decisions of our INBAC

protocol is independent of the underlying consensus algorithm. In addition, INBAC does not

necessarily decide 0 when a failure occurs. When a process succeeds in collecting all votes

by helping (while, for example, another process may have crashed), INBAC encourages it to

propose 1 to consensus by looking at every process’s vote in the acknowledgements received.

Hence INBAC may decide 1 when a failure occurs.

48

2.5. Indulgent Atomic Commit

Best-case complexity. We now count the number of messages and that of message delays.

Since in every nice execution every process decides at 2U , then the number of message

delays meets the lower bound (Theorem 1). As for the number of messages in any nice

execution, at time 0, for every process P , f messages leave from P ; at time 2U , exactly f

messages arrive at the same process P .12 (This is because in INBAC, a backup process sends

the acknowledgement of several votes V in one message). Therefore, among n processes, 2 f n

messages are exchanged in E , which meets the lower bound on the number of messages in

Theorem 5. This optimal result shows that both lower bounds are tight, as summarized in

Theorem 6.

In the version as described above, the complexity of INBAC of a failure-free execution in which

some process votes 0 is the same as the complexity of any nice execution. We remark that

our protocol INBAC may accelerate such failure-free execution by doing the following: if a

process P votes 0, then P sends its vote to every process and decides 0 at the very beginning

(and in the meantime, a process Q �= P who receives one vote of 0 decides 0 immediately).

Then a failure-free execution in which some process votes 0 can terminate at the end of the

first message delay, which is faster than any nice execution.

Theorem 6 (Message-optimal indulgent atomic commit given two message delays). Given

any protocol that solves consensus in a network-failure system, INBAC solves indulgent atomic

commit, and during every nice execution of INBAC, (a) any process decides after two message

delays, and (b) n processes exchange 2 f n messages.

Finally, as we claimed in the beginning of this section, we note a necessary design for the

optimal protocol. We show in Lemma 6 that f −1 acknowledgements of other processes’ votes

are necessary. (Our INBAC adopts this design for optimality; for example, when P f +1 decides

in a nice execution, P f +1 has received exactly f −1 acknowledgements of P1’s votes.) As both

Lemma 5 and Lemma 6 are necessary in designing message-optimal protocols, e.g., given

three message delays, they may be of independent interest and worth mentioning here.

Lemma 6 (Quick acknowledgements of other votes). Let π be any indulgent atomic commit

protocol. Let E be any nice execution of π. Let P decide at some time t1 in E. Let process R �= P.

Let Θ be such set of processes that ∀Q ∈Θ, Q satisfies that before t1 (including t1) in E, R reaches

Q, and subsequently Q reaches P. Among the messages whose destination is P, let M be the

set of messages that arrives at P before or at t1. For each m ∈M , let tm be the time at which m

leaves from its source and let t2 = maxm∈M tm.

If t2 ≤ 2U , then |Θ| ≥ f −1.

Proof. By contradiction. Suppose that |Θ| ≤ f −2. Denote by τQ the time at which R reaches

12A message whose source and destination is the same does not need to be sent over the network; such a message
arrives immediately and is not counted in the messages exchanged among the n processes.

49

Chapter 2. The Complexity of Distributed Transaction Commit

Q in E . Denote by τP the time at which R reaches P in E . Denote by Φ the set of R and the

processes which R has reached at t2. Denote by τQ− the time at which R reaches Q− for each

process Q− ∈Φ\(Θ∪ {P,R}) in E .

We build a crash-failure execution E0 based on E . In E0, R crashes before sending any message

(i.e., R crashes at time 0). For Q, E0 is the same as E until Q crashes and Q crashes before

sending any message that is expected to send upon the message(s) received by Q at τQ (i.e.,

Q crashes at τQ). For P , E0 is the same as E until P crashes before sending any message that

is expected to send upon the message(s) received by P (i.e., P crashes at τP). For every other

process O, E0 is the same as E until some process in Θ∪ {P,R} timeouts at some process not in

Θ∪ {P,R}.

Now we construct E0 after some process timeouts as follows. First, we consider the earliest

timeout. If Φ\(Θ∪ {P,R}) is empty, the earliest timeout occurs at a process later than t2. If

Φ\(Θ∪ {P,R}) is non-empty, the earliest timeout occurs at a process in Φ\(Θ∪ {P,R}). Let

Q− be the process at which the earliest timeout occurs. Denote by t3 at which the earliest

timeout occurs. Certainly, whether Q− ∈Φ\(Θ∪ {P,R}) or not, t3 >U . W.l.o.g., we assume that

Q− ∈Φ\(Θ∪ {P,R}). If Q− sends any message m1 upon the timeout event, then we assume that

m1 arrives at its destination at time t3 +U . Second, any other message that is different from

E due to the timeout events arrives in a delay similarly, i.e., with the same message delay U .

Finally, every message that is sent after t2 arrives later than t1.

Moreover, in E0, R proposes 0, every other process proposes 1 and no process in Ω\(Θ∪ {P,R})

crashes. As |Θ| ≤ f −2 and t1 − t2 ≤ U , E0 is a legitimate crash-failure execution of π. Any

remaining process O ∈Ω\(Θ∪ {P,R}) decides 0 in E0. W.l.o.g., let O be the earliest process that

decides. Denote by t4 at which O decides.

Then based on E and E0, we build a network-failure execution Eas ync . In Eas ync , every process

proposes 1 and no process crashes. Therefore, Eas ync starts as E . Let Ω1 =Ω\(Θ∪ {P,R}). Let

Φ1 =Φ\(Θ∪ {P,R}). Then we construct Eas ync such that:

• Every message from R to a process in Ω1 arrives later than max(t1, t4);

• Every message from Q to a process in Ω1 sent after or at τQ arrives later than max(t1, t4);

• Every message from P to a process in Ω1 sent after or τP arrives later than max(t1, t4).

• Every message from a process in Φ1 to R arrives later than max(t1, t4);

• Every message from a process Q− in Φ1 to Q sent after or at τQ− arrives later than

max(t1, t4).

• Every message from a process Q− in Φ1 to P sent after or at τQ− arrives later than

max(t1, t4).

• Every message sent after t2 arrives later than t1.

50

2.5. Indulgent Atomic Commit

In addition, the rest of the messages which are communicated among Ω\(Θ∪ {P,R}) are

(sent/received) the same as in E0 after the first timeout event. This timeout event occurs at

the same time t3 at Q− in both Eas ync and E0.

Process Q− might send some message m1 due to the timeout event. If m1 is sent to P , Q or R,

then we assume that m1 arrives later than t1; if m1 is sent to some process O in Ω\(Θ∪ {P,R}),

then O can only send some message m2 after or at t3 +U . As t3 > U , t3 +U > 2U ≥ t2 and

therefore, m2 also arrives later than t1. Thus any message that is different from E due to the

timeout events arrives later than t1. Then Eas ync and E are indistinguishable for P before and

at t1. As a result, P decides 1 at t1.

Process O is among Ω\(Θ∪ {P,R}). For O, Eas ync is the same as E0 before and at t4. As a result,

O decides 0 at t4.

Clearly, Eas ync is a network-failure execution of π that does not satisfy the agreement property.

A contradiction to the assumption that π solves indulgent atomic commit.

2.5.3 Full protocol INBAC

We describe here our INBAC protocol in detail as shown in Algorithm 7. Here the timer starts at

time 0 when every process proposes its value as assumed in the beginning of Section 2.4. Each

unit of time is set to the known upper bound of the message delay of the given crash-failure

system. Sending messages and processing messages are considered negligible in time. In

practice, processes may spend different amounts of time in processing a (sub)transaction

(which is to be committed or aborted through the protocol); the crash-failure system here

imposes that the this amount of time is also known and upper bounded„ and has already

been included in the unit of time for the timer (so that the even if different processes start

the protocol at different time instants, the use of the timer helps them to incorporate this

difference). Thus in a network-failure execution of the protocol, if the timer timeouts and a

process has not yet received the message (which it sets the timer to wait for), then a failure

(network failure or crash failure) occurs, and vice-versa. Below we also present the proof of

correctness of Algorithm 7, i.e., our INBAC protocol.

Proof. (Proof of Correctness of INBAC as well as Theorem 6.) First, we prove that every execu-

tion of INBAC satisfies the agreement property.

Agreement. By contradiction. Suppose that in some execution E , two different processes

P and Q decide differently. Suppose further that P decides 1 and Q decides 0. Given that

consensus satisfies the agreement property, at least one of P and Q’s decisions is not a result

of the decision of the consensus.

51

Chapter 2. The Complexity of Distributed Transaction Commit

Algorithm 7 INBAC

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.
IndulgentUniformConsensus, instance iuc.

upon event <inbac, Init> do
phase := 0;
proposed := FALSE;
decided := FALSE;
collection0 := �;
collection1 := �;
collection_help := �;
wait := FALSE;
val := ⊥;
decision := ⊥;
proposal := ⊥;
cnt := 0;
cnt_help := 0;

upon event <inbac, Propose | v> do
val := v;
forall q ∈ {P1, . . . , P f } do

trigger <pl, Send | q, [V, v]>;
if 1 ≤ i ≤ f then

trigger <pl, Send | P f +1, [V, v]>;
if 1 ≤ i ≤ f +1 then

set timer to 1;
else

set timer to 2;
phase := 1;

upon event <pl, Deliver | p, [V, v]> and phase = 0 do
collection0 := collection0 ∪ {(p, v)};

upon event <timer, Timeout> and phase = 0 and 1 ≤ i ≤ f do
forall q ∈ Ω do

trigger <pl, Send | q, [C, collection0]>;
phase := 1;
set timer to 2;

upon event <timer, Timeout> and phase = 0 and i = f + 1 do
forall q ∈ {P1, P2, . . . , P f } do

trigger <pl, Send | q, [C, collection0]>;
phase := 1;
set timer to 2;

52

2.5. Indulgent Atomic Commit

upon event <pl, Deliver | p, [C, collection]> do
collection1 := collection1 ∪ {(p, col l ect i on)};
cnt := cnt + 1;

upon event <timer, Timeout> and phase = 1 and not decided and not pro-
posed and i ≥ f + 1 do

phase := 2;
collection_val :=

⋃
(p,c)∈ col l ect i on1 c;

collection0 := collection0 ∪ collection_val ∪ {(sel f , val)};
if col l ect i on1 = {(P j , c j) | 1 ≤ j ≤ f } where c j = {(Pk , valk) | 1 ≤ k ≤ n} for ev-

ery j , 1 ≤ j ≤ f (with valk being the proposal of Pk) then
decision := AND1≤ k ≤ n valk ;
decided := TRUE;
trigger <inbac, Decide | decision>;

else if cnt ≥ 1 then
if for every process Pk , 1 ≤ k ≤ n, ∃ valk s.t. (Pk , valk) ∈ ⋃

(p,c)∈ col l ect i on1 c then
proposal := AND1≤ k≤ n valk ;
proposed := TRUE;
trigger <iuc, Propose | proposal>;

else
proposed := TRUE;
trigger <iuc, Propose | 0>;

else
wait := TRUE;
forall q ∈ {P f +1, P f +2, . . . , Pn} do

trigger < pl , Send | q, [HELP]>;

upon event <pl, Deliver | p, [HELP]> and phase = 2 and i ≥ f +1 do
trigger < pl , Send | p, [HELPED, collection0]>;

upon event <pl, Deliver | p, [HELPED, collection]> and i ≥ f +1 do
collection_help := collection_help ∪ collection;
cnt_help := cnt_help + 1;

upon cnt + cnt_help ≥ n − f and wait and not proposed and not decided and i ≥ f +1 do
wait := FALSE;

if col l ect i on1 = {(P j , c j) | 1 ≤ j ≤ f } where c j = {(Pk , valk) | 1 ≤ k ≤ n} for ev-
ery j , 1 ≤ j ≤ f (with valk being the proposal of Pk) then

decision := AND1≤ k≤ n valk ;
decided := TRUE;
trigger <inbac, Decide | decision>;

else if cnt ≥ 1 then
if for every process Pk , 1 ≤ k ≤ n, ∃ valk s.t. (Pk , valk) ∈ ⋃

(p,c)∈ col l ect i on1 c then
proposal := AND1≤ k≤ n valk ;
proposed := TRUE;
trigger <iuc, Propose | proposal>;

53

Chapter 2. The Complexity of Distributed Transaction Commit

else
proposed := TRUE;
trigger <iuc, Propose | 0>;

else
if col l ect i on_hel p = {(Pk , valk) | 1 ≤ k ≤ n} where valk is the proposal of Pk then

proposal := AND1≤ k≤ n valk ;
proposed := TRUE;
trigger <iuc, Propose | proposal>;

else
proposed := TRUE;
trigger <iuc, Propose |0 >;

upon event <timer, Timeout> and phase = 1 and not decided and not pro-
posed and 1 ≤ i ≤ f do

if col l ect i on1 = {(P j , c j) | 1 ≤ j ≤ f +1} where c j = {(Pk , valk) | 1 ≤ k ≤ n} for ev-
ery j , 1 ≤ j ≤ f and c f +1 = {(Pk , valk) | 1 ≤ k ≤ f } (with valk being the proposal of Pk) then

decision := AND1≤ k≤ n valk ;
decided := TRUE;
trigger <inbac, Decide | decision>;
return;

if for every process Pk , 1 ≤ k ≤ n, ∃ valk s.t. (Pk , valk) ∈ ⋃
(p,c)∈ col l ect i on1 c then

proposal := AND1≤ k≤ n valk ;
proposed := TRUE;
trigger <iuc, Propose | proposal>;

else
proposed := TRUE;
trigger <iuc, Propose | 0>;

upon event <iuc, Decide | v> and not decided do
decided := TRUE;
trigger <inbac, Decide | v>;

If neither of P and Q’s decisions is a result of the decision of the consensus, then either process

decides the value of its local variable deci si on. Since deci si on is assigned as the AND of the

n processes’ votes to i nbac at every process, P and Q must agree on their decisions, which

contradicts our assumption. If P ’s decision is a result of the decision of the consensus, then

by the validity property of consensus, some process R proposes 1 to i uc. Therefore R’s local

variable pr oposal is 1, which is equal to the AND of the n processes’ votes to i nbac. Now

that Q’s decision is equal to its local variable deci si on, which is the AND of the n processes’

votes to i nbac, P and Q must agree on their decisions, which contradicts our assumption.

As a result, Q’s decision must be a result of the decision of the consensus while P ’s decision

must not be. Now P ’s local variable deci si on is 1. Therefore, every process proposes 1 to

i nbac and at the same time, if any process assigns a value to its local variable pr oposal

54

2.5. Indulgent Atomic Commit

or deci si on, it can only assign a 1. Since Q’s decision is a result of the consensus, by the

validity property of consensus, some process R (not necessarily Q) proposes 0 to consensus.

First, we assume that P ∈ {P f +1,P f +2, . . . , Pn} and examine whether R exists. As P decides 1,

variable col l ect i on0 at every process in {P1,P2, . . . ,P f } is {(Pk , valk)|1 ≤ k ≤ n}. Therefore,

R ∉ {P1,P2, . . . ,P f }. I.e., R ∈ {P f +1,P f +2, . . . ,Pn}. Then variable cnt at R must be 0 and thus

for R to propose 0, R must have cnt_hel p = n − f , i.e., every process in {P f +1,P f +2, . . . ,Pn}

has sent to R their variable col l ect i on0. As a result, P has also sent its col l ect i on0, which is

updated to {(Pk , valk)|1 ≤ k ≤ n} when phase = 2. This leads R to propose 1 to consensus. A

contradiction.

Now we assume that P ∈ {P1,P2, . . . ,P f } and examine whether R exists. Similarly, variable

col l ect i on0 at every process in {P1,P2, . . . ,P f } is {(Pk , valk)|1 ≤ k ≤ n}. Moreover, variable

col l ect i on0 at P f +1 includes {(Pk , valk)|1 ≤ k ≤ f } as a subset. Again, R must belong to

{P f +1,P f +2, . . ., Pn}. For R to propose 0, R must have cnt_hel p = n − f , i.e., every process in

{P f +1,P f +2, . . . ,Pn} has sent to R their updated variable col l ect i on0, the union of which is

equal to {(Pk , valk)|1 ≤ k ≤ n}. (Variable col l ect i on0 at every process in {P f +1,P f +2, . . . ,Pn} is

updated to include its own vote.) This again leads R to propose 1 to consensus. A contradiction.

Next, we prove that every network-failure execution of INBAC satisfies the validity property,

and the termination property.

Validity. Clearly, the validity property can be separated into the commit-validity property: if a

process decides 1, then every process proposes 1; and the abort-validity property: if a process

decides 0, then some process proposes 0 or a failure occurs. The proof here (and the proofs

for the correctness of protocols later) proves that the protocol satisfies the commit-validity

property and the abort-validity property respectively.

Commit-Validity. Suppose that some process P decides 1. If P ’s decision is a result of the

decision of the consensus, then since consensus satisfies the validity property, some process

R (not necessarily P) must propose 1 to consensus. Since variable pr oposal at R is equal to

the AND of the n votes, every process proposes 1 to i nbac. If P ’s decision is not a result, then

variable deci si on at P is equal to the AND of the n votes, which implies that every process

proposes 1 to i nbac.

Abort-Validity. Suppose that process P decides 0. If P ’s decision is equal to variable deci si on

at P or variable pr oposal at some other process R, then some process must propose 0 to

i nbac. If not, then some process R (not necessarily P) must have proposed 0 to consen-

sus in the case where some value is missing in variable col l ect i on_hel p or the collection⋃
(p,c)∈col l ect i on1 c at R. This indicates that some message does not arrive before the timer

issues a timeout event, which is set to the upper bound of the message delay. Then, in a

55

Chapter 2. The Complexity of Distributed Transaction Commit

network-failure system, we can safely conclude that a failure occurs. Thus the abort-validity

property is satisfied.

Termination. By contradiction. Suppose that some correct process P does not decide. P

assigns phase to 1 in finite time. Then P is triggered by the event that the timer issues a

timeout and phase = 1, when P has not proposed to consensus or decided in i nbac. If

P ∈ {P1,P2, . . . ,P f }, then since consensus i uc satisfies the termination property in a network-

failure system, P eventually decides in i nbac. A contradiction. If P ∈ {P f +1,P f +2, . . . ,Pn},

then P assigns phase to 2 in finite time. In fact, every correct process in {P f +1,P f +2, . . . , Pn}

assigns phase to 2 in finite time. Since P does not decide, thus by the termination property

of i uc in a network-failure system, P must assign w ai t to TRUE and wait for the condition

cnt + cnt_hel p ≥ n − f to satisfy. If the condition is satisfied and the corresponding event

is triggered, then P eventually decides in i nbac. In other words, for P to not decide, the

condition should never be satisfied.

However, when w ai t is assigned to TRUE, cnt is 0. Only the message of [C, *] increments cnt .

Since P ∈ {P f +1,P f +2, . . . ,Pn}, then the message of [C, *] that arrives at P can only be from a

process in {P1,P2, . . . , P f }, each correct process of which must send [C, *] to P . On the other

hand, cnt_hel p at P is incremented if a message from a process in {P f +1,P f +2, . . . ,Pn} arrives.

Every correct process in {P f +1,P f +2, . . . ,Pn} also must send message [HELPED, *] to P . As at

most f processes can crash and messages eventually arrive at their destinations respectively,

cnt +cnt_hel p is eventually equal to or greater than n − f . In other words, the condition is

eventually satisfied. A contradiction.

Finally, since consensus satisfies the termination property in an network-failure system (as-

suming a majority of correct processes), INBAC also satisfies the termination property in an

network-failure system (assuming a majority of correct processes).

Therefore, given that consensus can be implemented for a network-failure system, protocol

INBAC (i.e., instance inbac) solves indulgent atomic commit.

2.6 Related Work

2.6.1 Complexity of commit protocols

The formal study of atomic commit problems dates back to Skeen [16]. Later, substantial

refinement [65, 68, 69] has been made, leading to the properties of Non-Blocking Atomic

Commit (NBAC) considered in Chapter 2. A comparison with previous definitions from the

literature is now in order. A synchronous NBAC protocol [16, 1] is a protocol which solves

NBAC in a crash-failure system (and thus the complexity is covered by our study). In previous

impossibility results [68, 83, 84, 75, 76], the definition of validity depended on which failure

56

2.6. Related Work

may occur. (Strong) validity was considered in the only case of crash failures, whereas a weak

form of validity, weak validity, was distinguished if a failure could be a network failure. In fact,

weak validity allows processes to abort a transaction (decide 0) even if none of them crashes

and all of them vote to commit (propose 1), as long as there is a network failure. Definition

1 unifies validity and weak validity for presentation clarity and consistency with previous

impossibility results.

Complexity measures. We consider two measures of complexity: the classical notion of

number of messages, and the number of message delays, following the complexity study by

Lamport of consensus [57]. The use of this complexity measure (message delays) is justified

by the general context of an arbitrary (asynchronous) system (considering network-failure

executions) in [57] and in Chapter 2. Unlike [1, 70], we do not consider the number of steps

as a measure of time. In [1, 70], steps were defined for synchronous systems and do not fit

a general asynchronous setting. (In addition, since steps and message delays measure time

differently, even for the special case of synchronous NBAC, the results on number of steps in

[1, 70] and our results on message delays are incomparable.)

Complexity results. The most closely related works to our results are (a) Dwork and Skeen’s

lower bound on the number of messages [1, 25, 26] and (b) Charron-Bost and Schiper’s bound

on the number of rounds [86] (of which the tightness was shown by Dutta et al. [90]). Both

works focus on synchronous NBAC, while our study is for an arbitrary (asynchronous) system

as well as an arbitrary combination of properties of NBAC. For the special case of synchronous

NBAC, we are the first to present a tight lower bound on both the number of messages and

that of message delays.

Compared with previous work, we generalize Dwork and Skeen’s necessary and sufficient

number of messages when at most n−1 processes may crash among n processes to an arbitrary

number of crashes. Still for the special case of synchronous NBAC, we make Charron-Bost

and Schiper’s lower bound on time complexity more precise. They showed a lower bound

of two rounds. In their model, one round consists of one send phase and one receive phase

[86, 91]. Thus a lower bound of two rounds only says that the number of send phases or receive

phases is at least two: it does not articulate which one. Combined with our tight lower bound

of one message delay, we get a clear picture of the time complexity of synchronous NBAC

protocols: a process can decide at the earliest by the end of the first message delay, and if

so, it has to send messages before its decision. In other words, for any synchronous NBAC

protocol, before any process decides, two send phases and one receive phase are necessary.

(The tight two-round protocol of [90] needs at least two message delays and thus does not help

to get such a picture.) Based on Charron-Bost and Schiper’s two-round lower bound, Gray

and Lamport [73] informally argued that two message delays should be optimal for indulgent

atomic commit. However, by the model of rounds [86, 91], two rounds only imply a bound of

one message delay.

57

Chapter 2. The Complexity of Distributed Transaction Commit

2.6.2 Commit protocols

Two-phase commit (2PC) [22] distinguishes one process as the leader, which is a single point of

failure in the sense that if it crashes, every other process is blocking in the fear of disagreement

[16]. To circumvent this, Skeen [16] proposed three-phase commit (3PC), which adds one

message delay and 2n −2 messages over 2PC, along with a termination protocol. However,

as several papers [71, 73] pointed out, 3PC (as well as many of its variants) does not solve

the potential conflict between two backup leaders at the same time given by the termination

protocol in crash-failure executions. Gray and Lamport [73] proposed PaxosCommit based

on Paxos consensus [24] to solve the disagreement of non-unique leaders in network-failure

executions. They also proposed faster PaxosCommit [73], an optimization of PaxosCommit,

removing one message delay.13 Both PaxosCommit [73] and faster PaxosCommit [73] solve

indulgent atomic commit.

Faster PaxosCommit and one of our protocols INBAC solve the same problem yet differ

significantly in how they achieve two message delays on a technical level. Faster PaxosCommit

uses Paxos consensus in a non-black-box way in every execution. However, the design of

INBAC follows immediately the proof of our lower bound results (Lemma 1 and Lemma 5 in

Chapter 2) and hence does not invoke consensus in any nice execution.

2.6.3 Low-latency commit protocols with weak semantics

As observed in [92], 1-delay commit protocols proposed in [93, 94] assumes that all processes

propose 1 before an execution starts. Jiménez-Peris et al. proposed a commit service which

has the same latency as 2PC but allows a process to decide twice and differently. MDCC [95]

proposed a variant of Paxos to coordinate transactions assuming all processes vote the same.

Replicated Commit [96] executed also the Paxos protocol to commit transactions, assuming

here that the votes from a majority of processes are already sufficient to commit. All these

protocols solve different (and weaker) problems than classical atomic commit.

Calvin [97] eliminated the explicit commit protocol by using a deterministic locking scheme,

using only one message to notify the decision; in fact, NBAC is only solved in failure-free

executions where one message delay is (not surprisingly) sufficient. Helios [3] commits a

distributed transaction if no conflict involving the transaction is detected across datacenters.

Helios considers both failure-free and network-failure executions. In failure-free executions,

optimal commit latency is achieved. In network-failure executions, the scheme proposed is

far from the optimal in terms of complexity. Our INBAC protocol may be adapted to the needs

of Helios with better complexity.

13Gray and Lamport [73] pointed out a possible optimization (without details) for an atomic commit protocol,
MD3PC, proposed in [72]. Then MD3PC achieves the same number of message delays and messages as faster
PaxosCommit. As MD3PC and faster PaxosCommit are equally efficient in nice executions, MD3PC is omitted
from the discussion.

58

2.7. Concluding Remarks

Table 2.4 – Complexity of Indulgent Atomic Commit, and Synchronous NBAC with f Crashes

Indulgent atomic commit Sync. NBAC Sync. NBAC
(our result) (our result) [1, 25, 26, 86, 90]

#delays 2 1 -
#messages 2n −2+ f (for f ≥ 2) n −1+ f 2n −2 (when f = n −1) [1, 25, 26]

Table 2.5 – Complexity of INBAC, (n-1+f)NBAC, 1NBAC, 2PC, PaxosCommit and faster Pax-
osCommit

1NBAC (n-1+f)- INBAC 2PC [22] Paxos- Faster Paxos-
NBAC Commit [73] Commit [73]

#delays 1 2 f +n −1 2 2 3 2
#messages n2 −n f +n −1 2 f n 2n −2 n f +2n −2 2 f n +2n

−2 f −2
Atomic Sync. Sync. Indulgent Blocking Indulgent Indulgent
commit NBAC NBAC

2.7 Concluding Remarks

We present the first systematic study of the (time and message) complexity of atomic commit.

Table 2.4 summarizes the complexity results of previous work and our result. The number

of message delays for previous work is left blank. We give a collection of lower bounds and

matching protocols, by which we also close many questions on atomic commit. For indulgent

atomic commit, the most robust among atomic commit problems we study, no (non-trivial)

lower bound on the number of message delays or the number of messages was known until

our work. Table 2.5 summarizes the time and message complexity of our INBAC, our two

optimal synchronous NBAC protocols: (n-1+f)NBAC and 1NBAC, 2PC, PaxosCommit, and

faster PaxosCommit.14 Clearly, our (n-1+f)NBAC and 1NBAC protocols are the best regarding

messages and message delays respectively. Among indulgent atomic commit protocols, in the

special case of f = 1, INBAC performs the best regarding both messages and message delays

(for n ≥ 2), and performs almost as efficiently as 2PC. Still among indulgent atomic commit

protocols, PaxosCommit and our INBAC protocol show a tradeoff between time and message

complexity: for f ≥ 2,n ≥ 3, PaxosCommit is better in messages while our INBAC protocol is

better in message delays. On satisfaction of properties, our (n-1+f)NBAC and 1NBAC protocols

and 2PC show a tradeoff between agreement and termination. 2PC guarantees agreement

in an arbitrary (asynchronous) system (considering a network-failure execution) but not

termination even if only crash failures are possible. On the other hand, (n-1+f)NBAC and

1NBAC terminate despite f crashes but an execution in an arbitrary (asynchronous) system

may violate agreement (due to the use of no-ops for (n-1+f)NBAC and due to the optimal delay

14To enable a fair comparison, we assume that each protocol involves only the n processes which vote and
decide, and each protocol starts when n processes send messages spontaneously. Thus 1 delay from 2PC and 2
delays from PaxosCommit and faster PaxosCommit are removed respectively, while n −1 messages are removed
from the three protocols respectively from their original counting.

59

Chapter 2. The Complexity of Distributed Transaction Commit

for 1NBAC respectively).

Some questions remain open. For example, for the tradeoff between time and message

complexity, the optimal number of messages given greater than two message delays for

indulgent atomic commit is not yet clear (although we close the question for two message

delays).

60

3 The Complexity of Causal Transac-
tions1

3.1 Introduction

Transactional distributed storage systems have proliferated in the last decade: Amazon’s Dy-

namo [34], Facebook’s Cassandra [99], Linkedin’s Espresso [100], Google’s Megastore [101],

Walter [31] and Lynx [102] are seminal examples, to name a few. A lot of effort has been devoted

to optimizing their performance for their success heavily relies on their ability to execute trans-

actions in a fast manner [103]. Given the difficulty of the task, two major “strategic” decisions

have been made. The first is to prioritize read-only transactions, which allow clients to read

multiple items at once from a consistent view of the data store. Because many workloads

are read-dominated, optimizing the performance of read-only transactions has been consid-

ered of primary importance. The second is the departure from strong consistency models

[104, 105] towards weaker ones [106, 107, 44, 108, 109, 110]. Among such weaker consistency

models, causal consistency has garnered a lot of attention for it avoids heavy synchronization

inherent to strong consistency and can be implemented in an always-available fashion in

geo-replicated settings (i.e., despite partitions), while providing sufficient semantics for many

applications [35, 36, 111, 38, 39, 40, 41].

Despite the observation that two-round causal transactions double latency and halve through-

put compared with an even weaker consistency model, eventual consistency [36], causal

read-only transactions in most transactional storage [35, 36, 37, 38, 40, 41] can induce more

than one-round communication. Even the performance of highly optimized state-of-the-art

causally consistent transactional storage systems has revealed disappointing. The recent

COPS-SNOW system [44] implements “fast” read-only transactions, i.e., transactions that com-

plete in one round of interaction between a client seeking to read the value of an object and the

server storing it. This design makes the assumption that write operations are supported only

outside the scope of a transaction.2 COPS-SNOW is designed to outperform COPS [35] and

its successor Eiger [36]. Both COPS and Eiger design non-fast read-only transactions yet the

1Preprint version of an article under submission: Diego Didona, Rachid Guerraoui, Jingjing Wang and Willy
Zwaenepoel. “Distributed Transactions: Dissecting the Nightmare” [98]

2Under this assumption, a single-object write and a transaction that only writes to one object are equivalent.

61

Chapter 3. The Complexity of Causal Transactions

evaluation of COPS-SNOW reveals that the latency of COPS-SNOW is sometimes higher than

that of COPS/Eiger [44]. In fact, the benefits and implications of many designs are unclear, and

their overheads with respect to systems that provide no consistency are not well understood.

In this chapter, we investigate the overheads from a theoretical perspective with the aim of

identifying possible and impossible causal consistency designs in order to ultimately under-

stand their implications. We prove two impossibility results.

• First, we prove that no causally consistent system can support read-write transactions

and implement fast read-only transactions. This result unveils a fundamental tradeoff

between semantics (support for read-write transactions) and performance (latency of

read-only transactions).

• Second, we prove that fast read-only transactions must be “visible”, i.e., their execution

updates the states of the involved servers. The resulting overhead increases resource

utilization, which sheds light on the inherent overhead of fast read-only transactions

and explains the surprising result in the evaluation of COPS-SNOW.

The main idea behind our first impossibility result is the following. One round-trip message

exchange disallows multiple servers to synchronize their responses to a client. Servers need to

be conservative and return possibly stale values to the client in order to preserve causality, with

the risk of jeopardizing progress. Servers have no choice but communicate outside read-only

transactions (i.e., helping each other) to make progress on the freshness of values. We show

that such message exchange can cause an infinite loop and delay fresh values forever. The

intuition behind our second result is different. We show that a fast read-only transaction has

to “write” to some server for otherwise, a server can miss the information that a stale value has

been returned for some object by the transaction (which reads multiple objects), and can then

return a fresh value for some other object, violating causal consistency.

At the heart of our results lies essentially a fundamental tradeoff between causality and

(eventual) freshness of values.3 Understanding this tradeoff is key to paving the path towards

a new generation of transactional storage systems. Indeed, the relevance of our results goes

beyond the scope of causal consistency. They apply to any consistency model stronger than

causal consistency, e.g., linearizability [104, 105] and strict serializability [112, 113], and are

relevant also for systems that implement hybrid consistency models that include causal

consistency, e.g., Gemini [114] and Indigo [115].

The rest of this chapter is organized as follows. Section 3.2 presents our model and definitions.

Section 3.3 presents the impossibility of fast read-only transactions. Section 3.4 presents the

impossibility of fast invisible read-only transactions (with restricted semantics, where writes

are outside the scope of a transaction). Section 3.6 extends the two impossibilities to partially

3This tradeoff is different from the traditional one in distributed computing between ensuring linearizability
(i.e., finding a linearization point) and ensuring wait-freedom, which refer to both rather strong properties.

62

3.2. Model and Definitions

replicated storage systems. Section 3.5 discusses alternative protocols that circumvent the

impossibility results. Section 3.7 discusses related work. Section 3.8 discusses the implications

of our impossibility resutls to some existing causal consistency designs and concludes the

chapter.

3.2 Model and Definitions

3.2.1 Model

We assume an arbitrarily large number of clients C1,C2,C3, . . . (sometimes also denoted by C),

and at least two servers PX ,PY (sometimes also denoted by P). Clients and servers interact

by exchanging messages. We consider an asynchronous system where the delay on message

transmission is finite but arbitrarily large, and there is no global clock accessible to any process.

Clients and servers have access to their local clocks; however, there can be arbitrary clock

drift between any two local clocks. Communication channels do not lose, modify, inject, or

duplicate messages, but messages could be reordered.

A storage is a finite set of objects. Clients read and/or write objects in the storage via transac-

tions. Any transaction T consists of a read set RT and a write set WT on an arbitrary number of

objects (RT or WT could be empty). We denote T by (RT ,WT). If T is read-only or write-only,

we denote T simply by RT or WT respectively. For the purpose of establishing results on

fast transactions (which are defined later), we focus on such transactions that can issue all

operations simultaneously, as illustrated in Figure 3.1. For example, we do not consider the

transaction model where a transaction must first read and then write upon the result of the

read, which intuitively falls out of the scope of fast transactions. Clearly, the transactions

which we focus on do not repeatedly read or write as well; therefore, the objects read by RT

are mutually different; so are the objects written by WT . Thus a client starts a transaction by

issuing all operations of the transaction to the storage. When a client returns from transaction

T , the client returns a value for each read in RT and ok for each write in WT . We say that a

client ends a transaction when the client returns from the transaction. Every transaction ends.

Here we note that when we later refer to the construction of an execution (of a few specified

transactions), we mean a sequence of message exchange events between clients and servers

in the asynchronous system (by which the transactions are executed). If we say some event

eventually occurs given a prefix of message exchange events, then in every suffix, there is some

finite time when the event occurs. This finite time instant can depend on the sequence of

events and is not assumed to be known a priori (although for convenience, we might give it a

notation).

The storage is implemented by servers. For simplicity of presentation, we first assume that

each server stores a different set of objects and the set is disjoint between servers and then

we show in Section 3.6 how our results apply to the non-disjoint case, or partially replicated

storage systems in general. Every server receiving a request from a client responds. A server

63

Chapter 3. The Complexity of Causal Transactions

Figure 3.1 – An example transaction

sends a message to a client only if the client requests the server via a transaction and has

not returned yet from the transaction; no server receives requests for objects not stored on

that server. Naturally, a server that does not store an object stores no information on values

written to that object; due to arbitrary clock drift, we consider a client request oblivious to the

client’s local clock, i.e., without any knowledge of the local clock. Moreover, we assume an

implementation where to respond to a read request, a server returns one and only one value

which has been written to the object in question.

3.2.2 Causality

We consider a transactional storage that ensures causality in the classical sense of [42, 43],

which we recall below.

The local history of client Ci , denoted Li , is a sequence of start and end events of the transac-

tions which Ci requests. We assume, w.l.o.g., that any client starts a new transaction after the

client has ended all previous transactions, i.e., any client is sequential. Hence any local history

Li can be viewed as a sequence of transactions as well.

We denote by r (x)v a read on object x which returns v , by r (x)∗ a read on object x for an

unknown return value (with symbol ∗ as a place-holder), and by w(x)v a write of v to object x.

For simplicity, we assume that every value written is unique. (Our results hold even when the

same values can be written.) Definition 6 captures the program-order and read-from causality

relation [42]. Assume that each object is initialized with a special symbol ⊥. (Thus a read can

be r (x)⊥.)

Definition 6 (Causality [42, 43]). Given local histories L1,L2,L3 . . ., for any two transactions

Ta , Tb , we say that Ta causally precedes Tb , which we denote by Ta� Tb , if (1) ∃i such that

Ta is before Tb in Li ; or (2) ∃v, x such that α= w(x)v ∈WTa and β= r (x)v ∈ RTb ; (3) ∃Tc such

that Ta� Tc and Tc� Tb .

Definition 7 ((Causally) legal transactions [42, 43]). Given local histories H = L1,L2,L3, . . ., we

64

3.2. Model and Definitions

say that client Ci ’s history is legal and respects causality if we can totally order all transactions

that contain a write in H and all transactions in Li , such that

1. For every transaction T ∈ Li , for every read r = r (x)∗ ∈ RT ,

(a) If r returns a non-⊥ value v and if Tx is the last transaction that contains a write

on object x and precedes T , then the write on x in Tx is w(x)v ;

(b) If r returns ⊥, then no transaction that precedes T contains w(x)∗;

2. For any Ta ,Tb such that Ta� Tb , Ta is ordered before Tb .

Definition 8 (Causal consistency [42, 43]). We say that storage cc is causally consistent if for

any execution of clients with cc, each client’s local history is legal and respects causality.

As noted by Raynal et al. [43], when every transaction contains a single read or a single write,

then the definition of causal consistency is identical to the definition of causal memory in [42].

For two writes α,β in two transactions Ta ,Tb respectively, if Ta� Tb , then we also say that

α�β and α causally precedes β.

3.2.3 Progress

Progress is necessary to make any storage useful. Without progress, we may devise a trivial

implementation which returns ⊥ for a read if a client has not written to the object in question,

and the most recent value written by C otherwise. The implementation trivially satisfies causal

consistency.

To ensure progress, we require any value written to be eventually visible. While rather weak,

this definition is strong enough for our impossibility results, which apply to stronger defi-

nitions. If compared with the definitions of eventual consistency [111, 116], the definition

of eventual visibility below is not conditioned on the absence of new writes or based on the

occurrence of underlying message exchange events, but focuses on clients’ progress in reads.

Different from convergence property [35] which focuses on transactions that are not causally

related, the definition of progress here is decoupled from the definition of causal transactions.

In addition, time τx,v in Definition 9 only notates eventually when a write or a value is visible

rather than imply its exact clock-time a priori.

As assumed before, Definition 9 is based on the setting where each server stores a different set

of objects and the set is disjoint between servers. In this setting, all writes of the same object

thus happen on the same server; thus Definition 9 also assumes that the last writer of the

same object wins, which is the most natural rule here, when deciding progress. For example, if

(the transaction that includes) w(x)a ends before (the transaction that includes) w(x)b starts

and for any arbitrary time T , some read which starts after T returns a, then Definition 9 is

violated. We adapt the definition later to cover the case where multiple servers may store the

same object and the writes of the same object can happen on different servers.

65

Chapter 3. The Complexity of Causal Transactions

Definition 9 (Eventual visibility). If we say a write w = w(x)v of transaction T is eventually

visible (or v is eventually visible as unique written values are assumed), then there exists some

finite time τx,v such that for any transaction Tr x which starts no earlier than τx,v and has

r (x)vnew ∈ RTr x , then either vnew = v or w(x)vnew ∈WTw x where transaction Tw x returns no

earlier than T starts.

Definition 10 (Progress). A (causally consistent) storage guarantees progress if every write is

eventually visible.

3.3 The Impossibility of Fast Transactions

In this section, we present and prove our first theoretical result, Theorem 7. We first define

formally the notion of fast transactions. In short, a fast transaction is one of which each

operation executes in (at most) one communication round between a client and a server.

3.3.1 Definitions

Fast transactions

Definition 11 below focuses on the message exchange in the presence of arbitrary, indefinitely

long message delay between servers. Clearly, if in the presence of arbitrary, indefinitely long

message delay between servers, every transaction can be fast (by a protocol that finishes

communication in at most one round-trip), then every transaction can be fast when message

delay is known or upper bounded by a known value.4

Definition 11 (Fast transaction). We say that a transactional storage provides fast transaction

T if for any client C , C ’s invocation I of T is fast.

If C ’s invocation I of T is fast, then no matter what execution precedes I , the following

execution of T is allowed:

• C sends at most one message to any server P and receives at most one message from

any server P ;

• If C sends a message to server P , then after the reception of that message, any message

which P sends to a server is delayed arbitrarily; moreover, after the reception of that

message, P receives no message from any server;

• Eventually C still returns I .

4A protocol can be designed to communicate more among servers when the servers are confident about an
upper bound on the message delay in order to, for example, return fresher values for transactional reads. Such
protocol still satisfies Definition 11 if it falls back to finish in one communication round when the servers find the
upper bound on message delay is violated.

66

3.3. The Impossibility of Fast Transactions

In the last condition of Definition 11, the eventual return of a client refers to two possibilities:

either the client needs not to receive a message from some server to return, or the server

eventually replies to the client. Thus Definition 11 excludes implementations where a server

waits for the reception of messages from another server (whether the server is one which C

sends a message to or not) to reply to a client. Definition 11 allows multiple clients to request

the same server so that the duration of two transactions (at least one of which is fast) invoked

by different clients can overlap. A final remark is that in Definition 11, if client C sends a

message to server P , then no matter what execution precedes the reception of that message at

P , the execution of transaction T above should be allowed.

One version

As mentioned in Section 3.2, we assume that a server returns one and only one value for a

transactional read, a property which we formally define below as one-version. In this chapter, a

version of an object is one value written to the object. When we mention two or more versions,

these versions are written to the same object if we do not state otherwise. To ensure that every

implementation with one-version property cannot work around the limit on the number of

versions, the formal definition considers the implementation as a curious “adversary” whose

goal is to output some version other than the allowed one version.

Consider all possible implementations. If some implementation instructs some process P

to calculate some version at some point, then w.l.o.g., the version is the result of a certain

algorithm which takes the messages and events at P before this point. W.l.o.g., any execution

can be considered as a set of events (with their corresponding messages). Thus we may model

the curious “adversary” by an algorithm which takes a subset of messages and events in a given

execution (as these messages and events appear only at the process in question) and outputs

a set of versions. To model that the curious “adversary” indeed outputs versions (rather than

arbitrary values), we must bind each version in the output to the write in the given execution.

We name such “adversary” as successful algorithms and define it in Definition 12. As the

transactional storage considered here is independent from a specific application, we assume

those implementations to be independent from the specific values written. Hence the binding

in Definition 12 covers all possible implementations.

Definition 12 (Successful algorithms). Consider any algorithm, denoted by A , whose input is

some information iE (events and messages) of execution E . The output of A is denoted by

A (iE). We say that A is successful

• If v ∈A (iE v), then in E v , ∃a, w(a)v occurs; and

• For any value u, let E u be the resulting execution from E v where w(a)v is replaced by

w(a)u (and the corresponding messages are replaced accordingly). Then u ∈A (iE u).

Since any local computation of a client (server) is based on all message exchange events so

67

Chapter 3. The Complexity of Causal Transactions

far at the client (server),5 Definition 12 and the definitions that follow represent the potential

return value of a transactional read as an output of a client’s local computation based on all

message exchange events at the client until the read (inclusive). Therefore with more messages

received at the client side, the client is able to infer more values written to any object. However,

one-version property focuses on the messages sent by servers during a transaction. This

leads to Definition 13, which counts the increment of versions brought by the increment of

messages received.

Definition 13 (Versions revealed). Consider execution E , client C and C ’s invocation I of

some transaction. Denote by M any non-empty subset of message receiving events that occur

at C (including message contents) during I . We say that M reveals (n2 −n1) version(s) of an

object a if

• Among all successful algorithms whose input is vC ,I , n1 is the maximum number of

values in the output that are also values written to a before the start of I ;

• Among all successful algorithms whose input is vC ,I and M , n2 is the maximum number

of values in the output that are also values written to a before the end of I ;

where vC ,I is C ’s view, or all events that have occurred at C (including the message content if

an event is message receiving), before the start of I .

Finally, Definition 14 combines Definition 12 and Definition 13 and defines formally one-

version property. As Definition 13 shows, we let the curious “adversary” try its best in out-

putting versions. Then in Definition 14, we enforce that despite such effort, only one version

can be obtained for each object in question for a given transaction. In this sense, one-version

property is the property of messages and events, rather than the client-side algorithm that cal-

culates the versions. As a result, by Definition 14, we define the property in a way independent

from message formats. For example, if messages m1 and m2 are from two different servers PX

and PY and m1 = (x,first 8 bits of z XOR c), m2 = (y,other bits of z XOR c), where z is a value

written to another object Z , then (m1,m2) can return more values x, y, z than expected. Such

messages should be excluded and are indeed so by Definition 14.

Definition 14 (One-version property). Consider any execution E , any client C and C ’s invo-

cation I of an arbitrary transaction T with non-empty read set R. For any non-empty set

of servers A, let ΛI ,A = R ∩ {objects stored on P |∀P ∈ A} and denote by MI ,A the events of C

receiving messages from any server in A (including message contents) during I . Then an

implementation satisfies one-version property if

• ∀E ,∀I ,∀A, MI ,A reveals at most one version for each object in ΛI ,A , and no version of

any object not in ΛI ,A ; and

5A specific protocol can surely take only a subset of these events, but cannot take more as input.

68

3.3. The Impossibility of Fast Transactions

• ∀E ,∀I , when A includes all servers, then MI ,A reveals exactly one version for each object

in R, and no version of any object not in R.

(If MI ,A reveals exactly one version of an object a, we may also specify the version v and say

that MI ,A reveals v .)

One final remark is that one-version property is defined in a general way, independent from fast

transactions. Consider an implementation of transaction which contains intuitively one round

but rather than sending a single message as Definition 11, the server sends several messages

to the same client. If each of these messages reveals one version, then our impossibility

results can be circumvented. The one-version property here however is defined on all message

receiving events during a transaction, and thus covers such intuitively one-round protocol.

3.3.2 Result

Theorem 7 says that it is impossible to implement fast transactions (even if just read-only ones

are fast).

Theorem 7. A causally consistent transactional storage that supports transactions which can

read and/or write multiple objects does not provide fast read-only transactions.

The intuition behind Theorem 7 is the following. Consider a server PX that stores object X

and a server PY that stores object Y . Suppose that a transaction writes some new values to X

and Y and another transaction reads X and Y . There is a risk of violating causality for PY if

PX returns an old value to the read-only transaction; furthermore, in this case, PY must return

an old value (to the same transaction). The statement is also true if we swap PX and PY . By

the definition of fast transactions, PX and PY must be able to avoid the risk without help from

other servers and thus have to be conservative, i.e., returning old values if there is a risk. As a

result, PX and PY take turns in creating causality violation risks for each other, and preventing

each other from returning new values forever, jeopardizing thereby progress. Below we first

sketch our proof of Theorem 7 and then present the full proof.

3.3.3 Proof by induction

The proof of Theorem 7 is by construction of a contradictory execution Ei mp which, to satisfy

causality, contains an infinite number of messages the reception of which is necessary for

some value to be visible. The reception of an infinite number of messages violates progress.

As illustrated in Figure 3.2a, some non-⊥ values of X and Y are already visible before our

construction of Ei mp ; then client Cw issues transaction W OT = (w(X)x, w(Y)y) which starts

at time tw ; since tw , W OT is the only executing transaction. We make no assumption on the

distributed protocol of W OT .

69

Chapter 3. The Complexity of Causal Transactions

We show the number of messages is infinite by showing that no matter how many k messages

have been sent and received, an additional message is necessary for x and y to be visible.

Let m0,m1, . . . ,mk−1,mk be the sequence of k messages. Then ∀k ≥ 1, the (k +1)th message

mk+1 is sent after mk is received, while mk+1 must be received before x and y are visible. Our

detailed proof proves the statement for each natural number k and thus shows the number

of messages goes to infinity. As every message is sent after previous messages are received

and messages are not received instantaneously, the delay to return x or y accumulates and

progress (Definition 10) is violated.

As we make no assumption on the underlying distributed protocol of transactions, the commu-

nication between PX and PY can be via a third server or not. Definition 15 on the precedence

relation of two messages unifies the description of the two types of communication above.

Following Definition 15, we simply say that PX (PY) sends a message which precedes some

message that arrives at PY (PX) in the proofs hereafter.

Definition 15. Message m1 precedes message m2 if (1) m1 = m2, or (2) a process sends m2

after it receives m1 or (3) there exists message m such that m1 precedes m and m precedes

m2.

(a) Construction of Ei mp

(b) Contradictory execution for the existence of
the first two messages

Figure 3.2 – Illustration of Ei mp and the base case

3.3.4 Construction of Ei mp

The construction of Ei mp is based on the following notations and execution Epr e f i x . Recall

that we denote by PX the server which stores object X , and PY the server which stores object

Y . Let Epr e f i x be any execution where X and Y have been written at least once and some

non-⊥ values of X and Y are visible. Let x∗ and y∗ be the visible values respectively. Suppose

that at time tst ar t , x∗ and y∗ are visible in Epr e f i x .

Starting from tst ar t , we construct execution Ei mp . In Ei mp , client Cw does transaction W OT =
(w(X)x, w(Y)y) which starts at some time tw > tst ar t , while all other clients do no transaction.

For Ei mp , since tw , W OT is the only transaction. The construction continues as long as at

least one between x and y is not visible.

70

3.3. The Impossibility of Fast Transactions

As mentioned in Section 3.3.3, the construction adds one message at a time (except for the first

two messages). For any positive number k, we construct Ei mp such that k specific messages

are sent and received after tw , we prove that (S) before x and y are visible, another message,

the (k +1)th message must be sent and received (after the reception of previous k messages)

and therefore, the construction of Ei mp must continue. If we consider statement (S) as a

property P (k), then we essentially prove that P (k) holds for all natural numbers 0,1,2,3,

Our proof naturally goes by induction. Proposition 1 presents the base case and Proposition 2

presents the inductive step on case k. As the base case shows two messages are sent, we index

the sequence of messages starting from 0: m0,m1, . . . ,mk−1,mk and then the first inductive

step is from case 1 to case 2. As shown in Proposition 1, let PX and PY send mX and mY after

tw that precede some message which arrive at PY and PX respectively. We define m0 and m1

as follows: one server between PX and PY sends m0 before receiving any message which is

preceded by m1 for {m0,m1} = {mX ,mY }.

It is easy to see that these k messages for any positive number k are not k arbitrary mes-

sages but specifically defined by the proof. Therefore, the proof of Proposition 1 and that of

Proposition 2 actually belong to the construction of Ei mp (at least partially). The proofs are,

however, deferred to later sections after some helper proposition and helper lemmas for a

better presentation of the complete proof.

Proposition 1 (Additional message in the base case). After tw , any P ∈ {PX ,PY } must send at

least one message that precedes some message which arrives at Q for {P,Q} = {PX ,PY }.

Proposition 2 (Additional message in case k). In Ei mp , m0,m1, . . . ,mk−1 have been sent. Let

Dk−1 be the source of mk−1. Let {Dk−1,Dk } = {PX ,PY }. Let Tk−1 be the time when the first

message preceded by mk−1 arrives at Dk . After Tk−1, Dk must send at least one message mk that

precedes some message which arrives at Dk−1.

3.3.5 Proof of Theorem 7

Our proof consists of three steps. First, we note that to prove Proposition 2 for each positive

number k +1, we do not only need the correctness of Proposition 2 but also the correctness

of another proposition (Proposition 3) for each k. The latter proposition is a property of the

construction of Ei mp in case k and does not add any message to the construction.

Then we prove two helper lemmas, Lemma 7 and Lemma 8, in order to prove all propositions.

Lemma 8 is helpful for the proof of both the base case and case k, and thus proven additionally

to avoid repetition, while Lemma 7 shows a property of write-only transactions. As Lemma 8

is based on Lemma 7, we prove the latter first.

Finally, we prove Theorem 7. Our complete proof necessarily shows the construction of an

infinite number of necessary messages by induction (through our proof of the base case

Proposition 1, the inductive step from case k to case k +1 Proposition 2 and Proposition 3),

71

Chapter 3. The Complexity of Causal Transactions

and relates the reception of the sequence of this infinite number of messages to the violation

of progress property.

Another proposition in case k

To help prove Proposition 2 for case k +1, Proposition 3 shows that in case k, if at some point,

some client reads X and Y in one transaction, then the client cannot return the values x and

y written by W OT . Proposition 3 is intuitively necessary, as it relates our induction to the

eventual visibility of x and y .

Proposition 3 shares the same notations as Proposition 2, for the sequence of messages

m0,m1, . . . ,mk−1,mk , time Tk , and the source of message Dk−1. The client Cr and the read-

only transaction ROT issued by Cr are explained below.

Proposition 3 (Case k). In Ei mp , m0,m1, . . . ,mk−1,mk have been sent. Then for any t in

[Tk−1,Tk), if Cr starts ROT at some time in [Tk−1, t) and tDk−1 = t , then ROT may not return x

or y.

Client Cr is a client that requests no transaction if Cr does not request ROT . We note that in

the construction of Ei mp , Cr indeed requests no transaction. Let ROT = (r (X)∗,r (Y)∗). By

Definition 11, for ROT , we schedule messages such that every message which Cr sends to

either P ∈ {PX ,PY } during ROT arrives at the same time tP at P . After tP and before P has

sent one message to Cr (during ROT), P receives no message and any message sent by P to

a process other than Cr is delayed to arrive after ROT ends. For either P , we denote these

messages which P sends to Cr after tP (during ROT) by mr esp,P .

In fact, in the later statements and proofs (especially for Lemma 8 and its proof), ROT refers

to a read-only transaction that reads X and Y in general and Cr is its client which does not

request any other transaction if we do not explicitly say so. The message schedule of ROT (as

well as the notations that follow) is the same as mentioned above to take advantage of the

property of fast transactions.

Helper lemmas

Lemma 7. In Ei mp , no write (including writes in a transaction) occurs other than W OT since

tw . If some client Cr requests ROT , then ROT returns x if and only if ROT returns y.

Proof of Lemma 7. By contradiction. Suppose that for some execution Ei mp and some read-

only transaction ROT , ROT returns (x∗, y), or (x, y∗). By symmetry, we need only to a contra-

diction for the former.

As ROT returns (x∗, y), by causal consistency, for Cr , there is serialization S that orders Cr ’s

transaction ROT and all transactions including a write such that the last preceding writes of

72

3.3. The Impossibility of Fast Transactions

X and Y before ROT in S are w(X)x∗ and w(Y)y respectively. Therefore any S must order

W OT before w(X)x∗. By progress, x and y are eventually visible. W.l.o.g., let τ(X ,Y),(x,y) be

some time (possibly in the future) when x and y are visible. If Cr requests another read-only

transaction ROT2 = (r (X)∗,r (Y)∗) after τ(X ,Y),(x,y) , then as no write occurs other than W OT

since tw , ROT2 returns (x, y).

Now that Cr requests two read-only transactions, ROT2 after ROT , S must include both

transactions and order ROT2 after ROT . As a result, the last preceding writes of X and Y

before ROT2 in S cannot be w(X)x and w(Y)y respectively, contradictory to the property of

causal consistency.

Lemma 8 (Communication prevents latest values). Suppose that Ei mp has been extended to

some time A and there is no other write than contained in W OT since tst ar t . Let {P,Q} = {PX ,PY }

where P can be either PX or PY . Denote by time B > A when one specific event6 occurs in Ei mp .

Given P, assume that if Cr starts ROT at some time in [A, tP), then for any tP ∈ [A,B), ROT may

not return x or y (no matter how messages are scheduled after time A).7 We have:

1. After B, P must send at least one message which precedes some message that arrives at Q;

2. Let t be the time when Q receives the first message which is preceded by some message

which P sends after B. For any τ ∈ [B , t), if Cr starts ROT at some time in [B ,τ) and

tQ = τ,8 then ROT may not return x or y (no matter how messages are scheduled after

time B except for time t as well as its precedence).

Proof of Lemma 8. We prove both statements by contradiction. Let us start with the proof of

the first statement by contradiction. Suppose that after B , P sends no message that precedes

any message that arrives at Q. In the proof by contradiction of the first statement, we construct

two executions: E1 and E2 where E2 is first a mere copy of Ei mp to time A and ensures the

same event to occur at time B , and continues without any transaction until both x and y are

eventually visible. Suppose that x and y are visible after time tev in E2. Then based on the

assumption in Lemma 8, tev ≥ B . We continue the construction of E2 by Cr requesting ROT

after tev . By progress, no matter how the messages of ROT are scheduled, Cr returns (x, y) to

ROT . Recall notations mr esp,P and mr esp,Q previously defined. The client-side algorithm A

of Cr to output the return value of ROT is a successful algorithm. In E2, given mr esp,P and

mr esp,Q (no matter when they are received and what are their contents), A outputs (x, y).

Then by one-version property, mr esp,Q reveals one and only one between x and y . (Otherwise,

if mr esp,Q can reveal another value v other than x and y , then we can obtain a successful

algorithm which outputs x, y, v given mr esp,P and mr esp,Q , violating one-version property.)

6For the presentation of this lemma, it is not necessary to know the exact event.
7Recall notation tP and the message schedule of ROT previously defined. The message schedule in the

assumption can be arbitrary after A as long as the message schedule of ROT is respected.
8If needed, by the asynchronous communication, we may delay t after ROT ends to respect the message

schedule of ROT that Q receives no message during ROT .

73

Chapter 3. The Complexity of Causal Transactions

Let ts be the latest time before B such that P sends a message that precedes some message

which arrives at Q in E1. If ts < A or ts does not exist, then we take ts = A. We now turn to

construct E1 (and we resume the construction of E2 later, which needs not to be complete

for this proof). We construct E1 based on E2 starting from ts . We delay any message which P

sends after ts in E1. If S is a server which receives a message preceded by any message sent

from P after ts in E2, then we let tS be the time when S first receive such message in E2 and

delay any message sent from S after tS in E1. In E1, Cr starts ROT after ts and before B . Recall

notations tP and tQ in the message schedule of ROT . In E1, we schedule message events of

ROT such that tP ∈ [A,B). Furthermore, in E1 and E2, we schedule message events of ROT

such that tQ takes the same value greater than tev .

According to our definition of ts , after ts , P does not send any message which precedes some

message that arrives at Q in E2. As we delay the messages which P sends after ts in E1, thus

before tQ , Q is unable to distinguish between E1 and E2. After tQ (inclusive), according to the

message schedule of ROT , by the time when Q sends one message to Cr during ROT , Q is still

unable to distinguish between E1 and E2. By Q’s indistinguishability between E1 and E2, in E1,

mr esp,Q is the same content as in E2 and reveals one and only one between x and y . W.l.o.g.,

let mr esp,Q reveal x.

By the definition of Epr e f i x , the return value of ROT in E1 cannot include ⊥. As Cr has not

requested any transaction before, then in E1, the return value depends solely on mr esp,P and

mr esp,Q . Therefore, by one-version property, A cannot output a value other than x for object

X . As a result, ROT returns x in E1. A contradiction to the assumption that if tP ∈ [A,B) (which

matches E1), then ROT may not return x or y .

We now prove the second statement by contradiction. The proof by contradiction is similar

to that of the first statement. Suppose that in some Ei mp , for some τ ∈ [B , t), some ROT such

that tQ = τ returns x or y . By Lemma 7, ROT returns (x, y). With an abuse of notations, let ts

be the latest time before B such that P sends a message that precedes some message which

arrives at Q in Ei mp . If ts < B or ts does not exist, then we take ts = B .

We construct Eol d based on Ei mp by Cr requesting ROT at earlier time. Furthermore, Eol d

is the same as Ei mp until Cr starts ROT . In Eol d , the message schedule of ROT satisfies

tP ∈ (ts ,B) and tQ = τ. All messages sent by P after ts are delayed. If S is a server which receives

a message preceded by any message sent from P after ts in Ei mp , then we let tS be the time

when S first receive such message in Ei mp and delay any message sent from S after tS in

Eol d . Thus Q is unable to distinguish between Eol d and Ei mp by the time when Q sends one

message to Cr (for ROT). Since ROT returns (x, y) in Ei mp , then mr esp,Q reveals x or y in Eol d .

By the definition of Epr e f i x , the return value of ROT in Eol d cannot include ⊥. As Cr has not

requested any transaction before, then in Eol d , the return value depends solely on mr esp,P

and mr esp,Q , which must include x or y . A contradiction to the assumption in the statement

of the lemma.

74

3.3. The Impossibility of Fast Transactions

Figure 3.3 – Timeline in Lemma 8

As illustrated in Figure 3.3, Lemma 8 is based on an assumption that before B , old versions

are returned to ROT and shows that B can be prolonged to time t . However, Lemma 8 makes

no assumption on the underlying distributed protocol of W OT and the detailed schedule of

message events except for some explicit references in the statement of Lemma 8.

Full proof

What remains is the complete proof of Theorem 7, which proves Proposition 1, Proposition 3

and Proposition 2 by induction, and relates the conclusion of the induction, i.e., the reception

of the sequence of this infinite number of messages, to the violation of progress property.

Proof of Theorem 7. By mathematical induction, we start with the base case, i.e., Proposition

1 and Proposition 3 for k = 1. Let A = tst ar t and let B = tw . By symmetry, we need only to

prove Proposition 1 for P = PX . To start with, we show that given P , for any tP ∈ [A,B), if Cr

starts ROT before tP , then ROT may not return x or y , in order to apply Lemma 8 later. As

illustrated in Figure 3.2b, at tP , as W OT has not yet started. Since by the time when P sends

one message to Cr during ROT , P receives no message, thus mr esp,P cannot reveal x or y . By

one-version property, mr esp,P reveals at most one version v1 of X and {mr esp,P ,mr esp,Q } also

reveals at most one version v2 of X . Therefore v1 = v2 �= x. As Cr has requested no transaction

before, the return value of ROT solely depends on mr esp,P and mr esp,Q . As the client-side

algorithm of Cr for the return value of ROT is a successful algorithm, ROT returns v1 = v2 �= x

for object X . (Due to Epr e f i x , ROT cannot return ⊥.) Then by Lemma 7, ROT may not return

x or y . Figure 3.2b illustrates the execution that contradicts Lemma 7. Thus Lemma 8 applies.

By Lemma 8, after B = tw , P must send at least one message that precedes some message

that arrives at Q, which concludes that Proposition 1 is true for either P ∈ {PX ,PY }. Following

Proposition 1, recall the definition of m0 and m1. We construct Ei mp by letting m0 and m1 be

sent. Recall that T1 is the time when the first message preceded by m1 arrives at D0. According

to Lemma 8, for any t ∈ [B ,T1), if Cr starts ROT at some time in [B , t) and tD0 = t , then ROT

may not return x or y , which proves Proposition 3 for k = 1.

We continue with the inductive step from case k to case k +1. We assume that Proposition 2

and Proposition 3 are correct for case k and prove that Proposition 2 and Proposition 3 are

correct for case k +1. Let A = Tk−1, B = Tk , P = Dk−1 and Q = Dk . According to the definition

of Tk , Tk is at least the time when mk is received. By Proposition 2 for case k, mk is sent at

least after Tk−1. Therefore, Tk > Tk−1, or B > A. Thus Lemma 8 applies again. By Lemma 8,

we thus have: (1) after Tk , Dk+1 = Dk−1 must send at least one message mk+1 which precedes

some message that arrives at Dk ; we construct Ei mp by letting mk+1 be sent; and (2) for any

75

Chapter 3. The Complexity of Causal Transactions

t ∈ [Tk ,Tk+1), if Cr starts ROT at some time in [Tk , t) and TDk = t , then ROT may not return x

or y . I.e., we prove Proposition 2 and Proposition 3 for case k +1. Therefore, we conclude that

Proposition 2 and Proposition 3 are correct for any positive number k. Clearly, by the proof

by induction above, we include an infinitely long sequence of messages m0,m1,m2, . . . in our

construction of Ei mp .

Next we show that Ei mp violates progress by contradiction. Suppose that Ei mp does not violate

progress. As there is no other write since the start of W OT , then in Ei mp there is finite time

τ such that any read of object X (or Y) which starts at any time t ≥ τ returns x (or y). We

have shown that Tk+1 > Tk for any positive k. Thus for any finite time τ, there exists K such

that for any k ≥ K , Tk > τ. By Proposition 3, if Cr starts ROT at some time [Tk , t) and tDk = t ,

then ROT may not return x or y . Since Tk > τ, we reach a contradiction. Therefore we find

an execution Ei mp where two values of the same write-only transaction can never be visible,

violating progress.

3.4 The Impossibility of Fast Invisible Transactions

As we pointed out in the introduction, some systems considered a restricted model where

all transactions are read-only and write operations are supported only outside the scope of a

transaction. This restricted model also circumvents the impossibility result of Theorem 7. In

this model, we present our second theoretical result, Theorem 8, stating that fast read-only

transactions (while indeed possible) need to be visible (need to actually write).

We first formally define the notion of (in)visible fast transactions in Definition 16 and then

present and prove Theorem 8.

3.4.1 Definitions

For simplicity of presentation as well as our proof, we define invisible transactions based on

our definition of fast transactions.

Definition 16 (Invisible fast transactions). We say that fast transaction T is invisible if for no

client C , C ’s invocation I of T is both fast and visible.

Definition 16 is thus based on the visibility of I . Let some C ’s invocation I be fast. For any

execution E that includes I , we schedule I according to Definition 11 and let M be the message

exchange events between C and all servers to which C sends a message according to Definition

11. Then Definition 17 shows the visibility of I .

Definition 17. If for some E which schedules I as above, in addition to M , every execution E−

where C does not invoke I is still different from E , then we say I is visible.

Definition 17 defines the visibility of a transaction from the point of view of message exchange

76

3.4. The Impossibility of Fast Invisible Transactions

events. The intuition behind Definition 17 is that if no matter whether a client requests a trans-

action or not, in addition to the message exchange events required by the distributed protocol

of the transaction, every message exchange event remains the same, then the transaction is

indeed invisible to the storage system.

Here the definition of visible transactions covers two possibilities: (1) a server writes locally,

which affects the messages sent later by the server; and (2) upon the transaction request, a

server sends messages to other servers, for example, to notify them of the transaction. For

the latter, even if a server sends empty messages, the transaction is considered visible (if

these empty messages would not be sent without the occurrence of this transaction), as these

messages add complexity to the storage system. From our proof of Theorem 8, however, we

show that fast transactions send more than empty messages.

3.4.2 Result

Theorem 8. A causally consistent transactional storage that supports fast read-only transactions

does not provide invisible fast read-only transactions.

The intuition of Theorem 8 goes back to that of Theorem 7. Consider a server PX that stores

object X and a server PY that stores object Y . Suppose that some client writes some new

value to X and then to Y , while another client requests a read-only transaction that reads X

and Y . There is a risk of violating causality for PY if PX returns an old value to the read-only

transaction. By the definition of fast transactions, PY must be able to avoid the risk without

help from other servers and thus have to conservative, i.e., returning an old value as well.

To ensure progress, PX surely needs to notify PY of when PY can stop being conservative.

However, due to asynchronous communication, PX ’s notification can arrive earlier at PY than

some transaction T where PX has already returned an old value. This leads to the fact that PX

must send more than empty messages: PX ’s notification needs to include some identifier of T

in order for PY to satisfy causal consistency.

3.4.3 Proof by contradiction

Here we formalize our intuition and introduce the organization of the full proof.

We prove Theorem 8 by contradiction. I.e., suppose that some causally consistent transactional

storage provides invisible fast read-only transactions. Then the assumption for contradiction

is equivalent to say that for any C and C ’s invocation that is fast, for any E which schedules I

by fast transactions, some execution E− where C does not invoke I is the same as E except

that E includes additional message exchange events between a client and severs of I . To

prove Theorem 8, we choose executions where (1) for each object, some non-⊥ value is

visible; (2) client C which invokes I has not done any transaction (including single-object

write transactions and read-only transactions) before I .

77

Chapter 3. The Complexity of Causal Transactions

As mentioned in the intuition of our proof, PX ’s notification needs to include some identifier

of a transaction to satisfy causal consistency. It is counter-intuitive that PX only notifies

the existence of one transaction rather than its identifier. We formalize the necessity of the

identifier as follows.

Let D be some sets of clients which has not done any transaction before a read-only transaction.

Let D1 be any subset of D. Let S1 be a set of invocations (1) which are fast, (2) each of which is

issued by a different client in D1, and (3) which start at the same time t0 and end at the same

time T2. We schedule each invocation of S1 according to Definition 11. Let M1 be the message

exchange events between a client in D1 and all servers to which a client in D1 sends a message

according to the first entry of Definition 11. We denote by D2 a different subset from D1, and

S2, M2, the invocations and message exchange events that follow.

Proposition 4 (Assumption for contradiction). For any execution E1 which schedules S1 by fast

transactions, for some D2, some execution E2 where (1) D1 does not invoke S1 but D2 invokes S2

is the same as E1 except for the message exchange events M1 and M2.

Proposition 4 captures our intuition on the identifier in that if PX ’s notification does not

identify an invocation, then some other invocation can be an substitute and as a result, the

message exchange events that follow are the same after the substitution.

Proposition 4 is a necessary condition for the assumption that no fast I is visible. To see this,

we start with the assumption that no fast I is visible. Then given D1 and any E1, we apply the

assumption that no fast I is visible to clients in D1 one by one. After |D1| times, all clients and

their invocations are removed from E1, the resulting execution is E2 for an empty set of clients

D2, which proves Proposition 4.

As a result, our proof of contradiction is organized as follows. First, we assume Proposition

4 for contradiction so that if Proposition 4 is violated, then the assumption that no fast I is

visible is also violated. Then we present more details of the two executions E1 and E2 in the

assumption for contradiction. Next, we construct another execution E1,2 based on E1 and E2

which takes advantage of the same message exchange events in the assumption. Finally, we

show that E1,2 violates causal consistency. As Proposition 4 is a strictly weaker assumption

than the assumption that no fast I is visible, by the contradictory execution E1,2, we conclude

that Theorem 8 is true.

3.4.4 Construction of executions

We consider a specific read-only transaction ROT = (r (X)∗,r (Y)∗). Let S1 be a set of invo-

cations of ROT . Let E1, D1 and M1 follow the definitions in Proposition 4. Then in E1, every

invocation in S1 starts at the same time t0 and ends at the same time T2. Both t0 and T2 are

notations rather than take specific values. For S1, w.l.o.g., we further schedule every message

which a client in D1 sends (to a server) to arrive at the same time T1. According to Definition

11, each client in D1 receives at most one message. If any, we say that message is a critical

78

3.4. The Impossibility of Fast Invisible Transactions

message. After T1 and as long as PX (PY) is still about to send a critical message to some client

in D1, PX (PY) receives no message from any other server. Each client in D1 receives at most

one message from each of PX and PY and returns ROT at time T2.

By Proposition 4, for E1, ∃D2, such that some E2 where D2 invokes S2 instead is the same as E1

except for message exchange between D and {PX ,PY }. Then we can schedule every invocation

in S2 in a similar way as S1. Since for each server P ∈ {PX ,PY }, P receives no message from

any other server after T1 (before P is still about to send a critical message to some client in

D1) in E1, we let every invocation in S2 start at the same time t0, and every message which a

client in D2 sends (to a server) be received at the same time T1 in E2. After T1, although in E2,

PX (PY) can delay or advance the time when PX (PY) replies to a client in D2, the time period

when PX (PY) receives no message from any other server is the same as in E1 by Proposition 4.

Therefore, w.l.o.g., we assume that the time when PX (PY) sends the last critical message to

a client in D is the same in E1 and E2. By the property of fast transactions, each client in D2

receives at most one message from each of PX and PY and returns ROT , w.l.o.g., at the same

time T2.

The two executions E1 and E2 are illustrated in Figure 3.4a. Since after T2, by Proposition 4,

E1 and E2 are the same, then we construct both executions as follows. We let another client

C ∉D perform two writes w(X)x and w(Y)y after T2 to establish w(X)x�w(Y)y according

to Definition 6. As we assume an arbitrarily large number of clients, C exists. By the schedule

of fast read-only transactions, i.e., Definition 11, in E1 and E2, some messages may be delayed

but need not to be delayed indefinitely. (Moreover, if the delayed message is between two

servers, then it is received at the same time in E1 and E2 by Proposition 4; if the delayed

message is from a server to a client, which is not a critical message, then it is received after

the client returns, i.e., time T2 by Definition 11.) In both executions, no message is delayed

indefinitely and therefore y is eventually visible. We denote by τ the time instant after which y

is visible in both executions.

(a) Message schedule of Ei (b) Message schedule of E1,2

Figure 3.4 – Construction and extension of Ei

As promised, we now construct execution E1,2 based on E1 and E2. The goal is to let E1,2 =
E1 = E2 except for the communication with D until τ. For i ∈ {1,2}, let Ci be any client in

Di . W.l.o.g., we assume that D1\D2 �= �. In E1,2, every client in D1 ∪D2 invokes ROT at t0.

As illustrated in Figure 3.4b, while every client C1 ∈ D1 invokes ROT , PX receives the same

message from C1 at the same time T1 and no message from a server after T1 in a same way

79

Chapter 3. The Complexity of Causal Transactions

as in E1, and sends the same message to C1 at the same time as in E1. Similarly, while every

client C2 ∈D2 invokes ROT , PY receives the same message from C2 at the same time T1 and

no message from a server after T1 in a same way as in E2, and sends the same message to C2

at the same time as in E2. The construction so far only completes the message schedule of

invocations of D1 ∩D2.

Let us now consider clients in D1\D2 and D2\D1 respectively. While every client in D1\D2

invokes ROT , PY does not receive the message from the client. Similarly, while every client in

D2\D1 invokes ROT , PX does not receive the message from the client. Due to asynchronous

communication, the reception of these messages may be delayed by a finite but unbounded

amount of time. We explain later the exact amount. The construction so far is illustrated in

Figure 3.4b. Based on the construction so far, by T2, PX is unable to distinguish between E1

and E1,2 while PY is unable to distinguish between E2 and E1,2.

In our previous construction of E1 and E2, after T2, E1 and E2 are the same. By the indistin-

guishability of PX and PY here, we are allowed to continue the construction of E1,2 so that

after T2, E1, E2 and E1,2 are the same. In particular, in E1,2, after T2, the same client C ∉ D

performs two writes w(X)x and w(Y)y after T2 to establish w(X)x�w(Y)y in the same way

as E1 and E2. To keep the respective indistinguishability of PX and PY , these messages that

are delayed in the construction so far are received after time τ. We explain later the exact

time regarding reception of some of these delayed messages. We recall that τ takes a value

determined by our previous construction of E1 and E2. Then as a result, we achieve our goal

of construction that E1,2 = E1 = E2 except for the communication with D until τ.

3.4.5 Proof of Theorem 8

The main idea of our proof is as follows. We continue to construct the two executions E2 and

E1,2 starting from time τ so that PY continues to be unable to distinguish between E2 and

E1,2, and then replies to a client a value in E1,2 that breaks causal consistency. As we reach

a contradiction, we show that our assumption for contradiction, namely, Proposition 4 is

violated. Thus we conclude that Theorem 8 is correct. After we prove E1,2 is a contradictory

execution below, we do not repeat this conclusion.

Our proof by contradiction surely relies on the indistinguishability of servers (PX ,PY) between

executions (E1,E2,E1,2). Hence to circumvent the impossibility result of Theorem 8, one has

to break the indistinguishability for servers in the construction above, implying the necessity

of some write to some server (i.e., writing to a client without the client forwarding the write to

any server is not an option). This is consistent with our expectation of what Theorem 8 shows

at the beginning of Section 3.4, i.e., fast read-only transactions need to actually write to the

storage system.

Proposition 5 (Contradictory execution). Execution E1,2 can violate causal consistency.

80

3.4. The Impossibility of Fast Invisible Transactions

(a) Extension of E2 (b) Extension of E1,2.

Figure 3.5 – Extension of two executions

Proof of Proposition 5. We first extend E2 and E1,2 after τ, as illustrated in Figure 3.5 and we

present the details below. To start with, we let any client Cr in D1\D2 start ROT immediately

after τ in E2. Thus in E2, every Cr sends a message to PY .

Recall that in our previous construction of E1,2, every Cr sends a message to PY as well yet the

reception is delayed. Here we construct E2 and E1,2 together for the communication between

every Cr and PY as follows. For each Cr , we schedule the message which Cr sends to PY to

arrive at some same time (which is after τ) in both E2 and E1,2. W.l.o.g., we schedule the time

to be the same for all clients Cr in D1\D2. We also schedule PY to receive no message from any

other server after receiving a message from each Cr in both E2 and E1,2. Then by fast read-only

transactions, PY still eventually replies to each Cr in both E2 and E1,2.

For the completeness of the construction of E2, we include the schedule of every Cr ’s commu-

nication with PX below. In E2, every Cr sends a message to PX . For each Cr , we schedule the

message which Cr sends to PX to arrive at the same time as the message which Cr sends to PY .

We also schedule PX to receive no message from any other server after receiving a message

from each Cr , and PX to eventually reply to each Cr in E2.

Now w.l.o.g., we assume that PX ,PY in E2 and PY in E1,2 send their reply (as defined in

Definition 11) to each Cr at the same time. By fast read-only transactions, each Cr receives

at most one message from each of PX and PY before Cr returns. As illustrated in Figure 3.5,

w.l.o.g., we assume these messages arrive at each Cr at some same time, Cr receives at most

one message from each of PX and PY , and every Cr returns to ROT at the same time t in both

E2 and E1,2.

Now that we have constructed E2 and E1,2, we compute the return value of ROT in E2 and E1,2

below. Denote the message which Cr receives from PY at t by mr esp,Y . Denote by mr esp,X ,

the message which Cr receives from PX at t . Therefore based on our extension of E2 and E1,2,

since by the time when PY sends a message to each Cr , PY is unable to distinguish between E2

and E1,2, mr esp,Y takes the same content in E2 and E1,2 (yet mr esp,X can take different content

in E2 and E1,2).

81

Chapter 3. The Complexity of Causal Transactions

We focus on mr esp,Y . By progress, in E2, Cr returns y for r (Y)∗ in ROT . By one-version

property, mr esp,Y reveals exactly one version of Y , and mr esp,X reveals no version of Y . Since

mr esp,X reveals no version of Y , mr esp,Y cannot reveal a version of Y different from y . In

other words, mr esp,Y must reveal y . In E1,2, mr esp,X cannot reveal x as w(X)x starts after T2.

Then mr esp,X must reveal some value x∗ �= x and x∗ �= ⊥. As mr esp,Y has already revealed y ,

messages {mr esp,X ,mr esp,Y } cannot reveal other versions of X or Y . In E1,2, since every Cr

does not issue any other transaction before ROT , the return value of ROT solely depends on

{mr esp,X ,mr esp,Y }, which is then (x∗, y).

Finally, we show that the return value (x∗, y) in E1,2 violates causal consistency by contradic-

tion. Suppose that E1,2 satisfies causal consistency. Then by Definition 8, for any Cr , we can

totally order all Cr ’s transactions and all write operations such that the last preceding writes of

X and Y before Cr ’s ROT are w(X)x∗ and w(Y)y respectively. Since w(X)x�w(Y)y , then

w(X)x must be ordered before w(Y)y . This leads w(X)x∗ to be ordered after w(X)x. We

now extend E1,2 so that (1) every previously delayed message is received after time t , and no

other message is delayed; (2) x is thus visible; and (3) Cr invokes ROT1 = (r (X)∗,r (Y)∗) after

x is visible. In E1,2, ROT1 returns (x, y) by Definition 10. According to Definition 8, the last

preceding write of X before ROT1 must be w(X)x. However, w(X)x∗ has already been ordered

after w(X)x and thus the last preceding write of X before ROT1 is w(X)x∗. A contradiction.

We thus conclude that E1,2 indeed violates causal consistency.

3.5 Alternative Protocols

To complement our theorems, we here present two alternative protocols which provides

fast causal transactions. To show the feasibility of fast read-only transactions, we describe

a protocol which makes fast read-only transactions visible by asynchronous propagation of

transaction identifiers. (Recall that in the proof of Theorem 8, we mention the intuition that

some kind of transaction identifier is necessary.) To discuss the impossibility results under

different assumptions on the underlying system (asynchronous or not) and the global clock

(accessible or not), we present a timestamp-based implementation of causally consistent

transactional storage. As we consider an accessible global clock, we remove the assumption of

oblivious algorithms previously in the timestamp-based implementation to take advantage of

the clock.

3.5.1 Visible fast read-only transactions

We present below a suite of algorithms, A , for fast read-only transactions. To comply with our

Theorem 7, we restrict all transactions to be read-only and updates to be outside transactions

(or equivalently be considered as single-object write transactions). The goal of A is to better

understand our Theorem 8. Theorem 8 shows that fast read-only transactions are visible.

The intuition of Theorem 8 is that after a fast read-only transaction T , servers may need to

communicate the information of T among themselves. However, it is not clear when such

82

3.5. Alternative Protocols

communication occurs. The COPS-SNOW [44] algorithm shows that the communication can

take place during one client request of write. A below shows that the communication can

actually take place outside any client request of write and asynchronously. Different from

COPS-SNOW where a value written is visible immediately after the write, A guarantees only

eventual visibility.

Algorithm 8 Client-side read/write algorithms

1: local variables
2: lc, logical clock
3: ct x, context
4: end local variables
5: function WRITE(ob j , val)
6: Identify server S by ob j
7: ct xS , lcS ← S.write(lc, ct x, ob j , val)
8: update_lc(lcS)
9: update_context(ob j , l cS , ct xS)

10: return OK
11: end function
12: function READ(ob j s)
13: t xI D ← generate_txID()
14: f i xedC t x ← ct x
15: for ob j in ob j s do
16: val , ver , ct xS , lcS ← S.read(lc, f i xedC t x, ob j , t xI D)
17: save val to val s
18: update_lc(lcS)
19: update_context(ob j , ver , ct xS)
20: end for
21: return val s
22: end function

Protocol

We describe first the data structure which each process maintains. All processes maintain

locally their logical timestamps and update their timestamps whenever they find their local

ones lag behind. They also move their logical timestamps forward when some communication

with other processes is made. (The function call in A is update_lc of which the details are

omitted for the simplicity of presentation.) Every client additionally maintains the causal

dependencies of the current transaction (i.e., the transactions each of which causally precedes

the current one). The maintenance of causal dependencies can be done in a similar way as

in COPS [35] and COPS-SNOW [44]. (Our algorithm A maintains causal dependencies in

variable ct x by function calls of update_context and ct x.update. The details are the same as

COPS [35] and COPS-SNOW [44] and thus omitted.) Every client is able to generate transaction

identifiers (by a function call of generate_txID in A). Every server needs to store the causal

dependencies which a client passes as an argument during its write. Every server additionally

83

Chapter 3. The Complexity of Causal Transactions

Algorithm 9 Server-side read/write algorithms

1: local variables
2: lc, logical clock
3: vi s, visible versions in tuples <ob j , ver >
4: ol dT x and cur r T x, storage of tuples <ob j , ver , ct x, t xI D> for each object
5: end local variables
6: function WRITE(lcC , ct xC , ob j , val)
7: update_lc(lcC)
8: ct x ← the context of ob j with the highest version in the storage
9: ct x.update(ct xC)

10: update_storage(ob j , val , lc, ct x)
11: return ct x, lc
12: end function
13: function READ(lcC , ct xC , ob j , t xI D)
14: update_lc(lcC)
15: if t xI D ∈ ol dT x then
16: ver ← the version identified by t xI D in ol dT x
17: else
18: vvi s ← the highest version of ob j in vi s
19: if <ob j , v> is in ct xC and v > vvi s then
20: ver ← v
21: else
22: ver ← vvi s

23: end if
24: end if
25: save <ob j , ver , ct xC , t xI D> to cur r T x
26: val ← the value identified by ver of ob j in the storage
27: ct x ← the context identified by ver of ob j in the storage
28: return val , ver , ct x, lc
29: end function

maintains a data structure called ol dT x for each object stored.

We next sketch how writes and read-only transactions are handled. The full algorithms are

shown in Algorithm 8 and Algorithm 9.

• Every client sends its logical timestamp as well as causal dependencies when requesting

a write of object ob j . A server uses the server’s updated logical timestamp as the version

ver of the value val written, stores the version and the value along with the causal

dependencies ct x (by a function call update_storage(ob j , val , ver , ct x) in Algorithm

9), and returns the version number to the client.

• Every client C sends its logical timestamp when requesting a read-only transaction t x. A

server first searches t x in ol dT x, and returns a pre-computed value according to entry

t x in ol dT x if t x ∈ ol dT x. Otherwise, a server returns some value previously observed

84

3.5. Alternative Protocols

Algorithm 10 Server-side asynchronous check

1: local variables
2: Same as in Algorithm 9
3: end local variables
4: when all versions of ob j below ver are in vi s, invoke async_check
5: procedure ASYNC_CHECK(ob j , ver)
6: identify ct x by ob j , ver in the storage
7: for ob jd , verd in ct x do
8: identify server D by ob jd

9: ol dT xD , lcD ← D .async_checkVis(ob jd , verd , lc)
10: update_lc(lcD)
11: save ol dT xD to ol dT x as follows:
12: for t xI D in ol dT xD do
13: if t xI D ∉ ol dT x then
14: get tuple <ob jd , ∗, ct xd , t xI D> from ol dT xD

15: identify version vpr ev as the highest version below ver of ob j in the storage
16: if <ob j , v> is in ct xd and v > vpr ev then
17: save tuple <ob j , v , −, t xI D> into ol dT x
18: else
19: save tuple <ob j , vpr ev , −, t xI D> into ol dT x
20: end if
21: end if
22: end for
23: end for
24: for t xI D in cur r T x do
25: if <ob j , v , ∗, t xI D> is in cur r T x and v < ver then
26: move the tuple identified by t xI D from cur r T x to ol dT x
27: end if
28: end for
29: save < ob j , ver > into vi s
30: end procedure
31: function ASYNC_CHECKVIS(ob jd , verd , lcS)
32: update_lc(lcS)
33: when < ob jd , verd > is in vi s, return ol dT x, lc
34: end function

by C or some value marked as “visible”.

We here sketch how ol dT x is maintained and communicated (during asynchronous propaga-

tion). The full algorithm is shown in Algorithm 10.

• After a server S responds to a client’s write request of value w for some object o, S sends

a request to every server which stores some value v such that w(o)v � w(o)w . Any

server responds such request with its local ol dT x when v is marked as “visible”.

85

Chapter 3. The Complexity of Causal Transactions

• After S receives a response from all servers which store some value that causally precedes

w , S stores their ol dT xs into S’s local one, chooses a value w∗ which is written before

w9

Any read-only transaction is stored and marked as “current” during its execution at any server.

A “current” transaction T is put in ol dT x when some value w is “visible” and T has returned

a value written before w of the same object.

Proof of correctness

Our suite of algorithms A above provides fast read-only transactions. As every message

eventually arrives at its destination (and therefore asynchronous propagation eventually

ends), A satisfies progress. As asynchronous propagation carries transaction identifiers, A is

visible. In what follows, we show that A satisfies causal consistency.

In Algorithm 9, when a server stores a value, the server chooses a version number strictly

greater than all values of the same object previously written. Therefore in addition to relation

�, we also enforce an ordering on all writes of the same object by their version numbers. In

what follows, we say that two writes w1 → w2, if (1) w1 is of a lower version number than w2

and w1, w2 write the same object; or (2) w1�w2; or (3) ∃ some write w3 such that w1 → w3

and w3 → w2. We first show a property for any read-only transaction in Lemma 9. We then

prove the correctness of A based on Lemma 9.

Lemma 9 (A correct snapshot for visible fast read-only transactions). Let T be any transaction

that contains at least two reads. Given any two reads r (a)u,r (o)v∗ ∈ RT , if ∃w(a)u∗ such that

w(a)u is of a lower version number than w(a)u∗, then w(a)u∗ → w(o)v∗ does not hold.

Proof of Lemma 9. By contradiction. Suppose that r (a)u,r (o)v∗ ∈ RT and w(a)u∗ → w(o)v∗

holds. According to Algorithm 9, there are three possibilities when the server Po that stores

object o returns val = v∗ at t xI D = T :

1. t xI D ∈ ol dT x;

2. t xI D ∉ ol dT x but for object o, ct xC specifies a version v , higher than the highest

version vvi s in vi s of the same object;

3. t xI D ∉ ol dT x; and for object o, ct xC does not specify a version or any specified version

v is lower than vvi s .

Let us examine each possibility. First, we look at the second possibility. Then < o, v >∈ ct xC ,

v corresponds to val = v∗ at Po , and v > vvi s . The maintenance of variable ct x maintains

9In order to choose a value correctly, in the algorithm, S actually sends a request after all values written before
w (of the same object) are marked as “visible”. Also, S does not choose a value for some t x which S has chosen
before.

86

3.5. Alternative Protocols

the precedences of a transaction (a single-object write transaction or a read-only transaction)

according to relation →. We sometimes also say a write is in ct x if the pair of the corresponding

object and version number is in ct x. By the maintenance of ct xC , since w(a)u∗ → w(o)v∗,

then w(a)u∗ ∈ ct xC . However, according to Line 16 of Algorithm 10 and Line 19 of Algorithm

9, if w(a)u∗ ∈ ct xC , then the server Pa which stores object a is unable to return val = u of

which the version is lower than that of u∗ at t xI D = T .

Next, we look at the third possibility. Then t xI D ∉ ol dT x. In addition, for object o, ct xC

does not specify a version or any specified version v is lower than vvi s ; in either case, vvi s

corresponds to val = v∗ at Po . According to Line 4 and Line 33 of Algorithm 10, when T reads

o at Po , u and u∗ are visible (i.e., in vi s) at Pa . Clearly, if T reads a at Pa before Pa replies to

as ync_checkV i s(a,u∗,∗), then Pa sends T to Po during as ync_checkV i s(a,u∗,∗) and Po

could have T ∈ ol dT x when T reads o at Po , which gives a contradiction. Therefore, T must

read a after Pa replies to as ync_checkV i s(a,u∗,∗), i.e., after u∗ is visible. Thus according to

Line 19 of Algorithm 9, Pa must find T ∈ ol dT x when T reads a. Similarly, due to Pa ’s reply to

Po ’s call of as ync_checkV i s(a,u∗,∗), the first time when Pa receives T must be also after u∗

is visible (while Pa invokes as ync_check(a,u1) for some version u1 after the version of u∗).

Then according to Line 16 of Algorithm 10, Pa pre-determines a version no smaller than the

version of u∗ for T , which contradicts the return value val = u of Pa .

Finally, we look at the first possibility. t xI D ∈ ol dT x. Since Po pre-determines val = v∗ for T ,

then either ct xC specifies v∗ for object o or v∗ is visible the first time when Po receives T . The

two cases are similar to the second and third possibilities, leading to contradictions against

the return value of Pa . As a result, we conclude that if w(a)u∗ → w(o)v∗ holds, then T cannot

have both r (a)u and r (o)v∗, which is equivalent to Lemma 9.

Proof of causal consistency. By contradiction. Suppose that some execution E violates causal

consistency. Then in E , some client C ’s local history cannot be totally ordered to satisfy

Definition 7. Clearly, without any read-only transaction, we can order all writes in a way that

respects relation → defined previously (which includes the relation of causality� between

any two writes). Therefore C does at least one read-only transaction. In order to incorporate

C ’s read-only transactions, we extend the relation → defined previously. Consider the set T X

of transactions that consist of all writes in E and all C ’s read-only transaction. For any two

transactions t x1 and t x2, we say that t x1 → t x2, if (1) t x1 and t x2 are two writes, t x1 is of a

lower version number than t x2 and t x1, t x2 write the same object; or (2) t x1� t x2; or (3) ∃
some t x3 ∈ T X such that t x1 → t x3 and t x3 → t x2.

Let tow be any ordering that respects relation →. We then add C ’s read-only transactions in

tow one by one. Since we suppose that E violates causal consistency, we let T be the first

read-only transaction such that some tow exists which can include C ’s read-only transactions

before T but for any tow , C ’s read-only transactions up to and including T cannot be placed

in tow to satisfy Definition 7.

87

Chapter 3. The Complexity of Causal Transactions

Let A be the set of such ordering tow that can include C ’s read-only transactions before T and

let to1 be any ordering in A. We first show that T must read at least two objects, the proof

of which is by contradiction. Suppose otherwise that RT = {r (a)u}. Let the last transaction

(which can be a read-only transaction or a write) done by C before T is α. Let the first write

done by C after T is β. Then in any to1 where all C ’s read-only transactions before T are

included, either (1) w(a)u is before α, or (2) β is before w(a)u, or (3) w(a)u is between α and

β. In the third case, we put T immediately after w(a)u. In the second case, β→ w(a)u does

not hold. (Suppose otherwise that β→ w(a)u holds. Then the logical timestamp l1 which

the client of w(a)u receives from Pa during w(a)u is higher than the logical timestamp l2

which C receives from the server that stores the object written by β during β. However, when

T reads a, the logical timestamp which C receives from Pa is at least l1, and as a result, the

value of l2 ≥ l1, a contradiction.) We move β and its successors of relation → after w(a)u. The

resulting ordering is still in A. We then put T immediately after w(a)u. In the first case, there

are two possibilities: (i) between w(a)u and α, there is some write w(a)u∗; (ii) between w(a)u

and α, there is no write w(a)u∗. For the latter, we put T immediately after α. For the former,

let w(a)u∗ be the first write of object a after w(a)u in to1. Then w(a)u∗ →α does not hold.

(Suppose otherwise that w(a)u∗ →α holds. Then w(a)u∗ is in the variable ct x maintained

by C before T starts. As a result, when T reads a, Pa sees w(a)u∗ ∈ ct xC and thus returns

a value with a version number no smaller than that u∗, a contradiction.) We move w(a)u∗

and its successors of relation → after α. The resulting ordering is still in A. We then put T

immediately after α.

Now we continue in the case where T reads at least two different objects. We consider Lemma

9 as a property of any read-transaction. Based on Lemma 9 and to1, we construct another

ordering to2 ∈ A as follows. For any r (a)u ∈ RT , consider Wu be the set of such write w(o)v∗

that (1) in to1, some write w(a)u∗ is after w(a)u and w(o)v∗ is after w(a)u∗ and (2) r (o)v∗ ∈
RT . If Wu =�, then we do nothing for r (a)u; otherwise, we let w(a)u∗ be the first write of a

after w(a)u in to1. We then augment Wu by adding the precedence of each element according

to relation →, and we do this until no more write after w(a)u∗ in to1 can be added. Let ss

be the subsequence of to1 which contains all writes in Wu . We move ss immediately before

w(a)u∗.

Below we verify that the resulting ordering tou (after the construction for r (a)u) falls in A.

By the construction based on relation →, tou still respects relation →. Thus we only need

to verify that C ’s read-only transactions before T can be placed in tou . We know that in to1,

all C ’s read-only transactions before T can be placed. Then while moving ss, we may move

some of C ’s read-only transactions as well. Namely, for any to1, given a way to put all C ’s

read-only transactions before T so that they are legal, we include in Wu the last read-only

transaction r t xl ast done by C before T that is put after w(a)u∗; then we still augment Wu by

adding the precedence of each element according to relation → and stop the addition when

no more write or read-only transaction after w(a)u∗ in to1 can be added. Now consider ss

as the subsequence of to1 which contains all writes and read-only transactions in Wu . Since

w(a)u∗r i g ht ar r owr t xl ast does not hold, we still move ss immediately before w(a)u∗ and

88

3.5. Alternative Protocols

the resulting tou respects relation→. Thus if ss includes any read-only transaction, then in tou ,

the position of the read-only transaction is still legal. In addition, C ’s read-only transactions

that are put before w(a)u∗ remain unchanged. Therefore, tou finds a way to place all C ’s

read-only transactions before T and falls in A.

Since ss is only a subsequence of to1, the move of ss creates no new pair w(a)u and w(o)v∗

such that r (a)u,r (o)v∗ ∈ RT and w(o)v∗ is after w(a)u∗ and w(a)u∗ is after w(a)u for some

w(a)u∗. Then after a finite number of moves, we can construct an ordering to2 ∈ A such

that for any r (a)u ∈ RT , Wu =�. We now turn to the placement of T in to2. Let α be C ’s last

transaction before T . Let β be C ’s first write after T . Let wl ast be the last write in to2 that

corresponds to some read in T . Since during the construction of to2, we move the positions of

some read-only transactions as well, after the construction of to2, we have also constructed

a way to place all C ’s read-only transactions before T in to2. For this placement, there are

three possibilities: (1) wl ast is between α and β, (2) wl ast is before α, and (3) wl ast is after

β. We show that in all these possibilities, we can place T possibly after some rearrangement

so that all C ’s transactions up to and including T are legal, which gives a contradiction. In

the first possibility, we place T after wl ast and we find all preceding writes of T correct, a

contradiction. In the second possibility, if there is any w(a)u∗ between w(a)u and α, then

according to Line 19 and Line 16 of Algorithm 10, no w(a)u∗ exists such that (1) w(a)u∗ →α

and (2) r (a)u ∈ RT ; therefore we can move w(a)u∗ and its successors of relation → after α in

to2; after the possible rearrangement, we place T after α and find all preceding writes of T

correct, a contradiction. In the third possibility, for any r (a)u ∈ RT , β→ w(a)u does not hold.

We thus move β and its successors of relation → after wl ast in to2; after the rearrangement,

we place T after wl ast and find all preceding writes of T correct, a contradiction. As T is able

to be placed in some ordering in A, we reach a contradiction against our assumption, and we

must therefore conclude that our algorithm A satisfies causal consistency.

3.5.2 Timestamp-based implementation

We present here some timestamp-based implementation of causally consistent transactional

storage to show that our impossibility results (Theorem 7 and Theorem 8) can be circumvented

under different assumptions on the underlying system. As we show later, the timestamp-based

implementation is invisible and the complexity of a server processing a client request is low,

w.l.o.g., we assume that the local computation at any server takes negligible time (compared

with communication delay) in our timestamp-based implementation.

Invisible fast read-only transactions

The algorithm B here relies on the assumption that all processes can access a global accurate

clock. The algorithm considered here is non-oblivious and thus takes advantage of accurate

timestamps. The description of B is as follows.

89

Chapter 3. The Complexity of Causal Transactions

• Before any client starts a transaction, the client accesses the clock and stamps the

transaction with the current time;

• Every client sends the accurate timestamp while requesting a transaction;

• If an operation writes a value to an object, then the server that stores the object attaches

the timestamp to the value;

• If an operation reads a value from an object, then the server that stores the object returns

the value with the highest timestamp which is still smaller than the timestamp of the

transaction. (If two or more values are attached with the same highest timestamp, then

we break the tie by returning the value written with the highest client ID.)

Each transaction induces one communication round and is thus fast. Each read-only trans-

action is also invisible. Algorithm B guarantees progress as the global accurate clock makes

progress.

Given the accurate global clock, B is correct when a transaction is not allowed to write more

than one object. Below is its proof of correctness (which is actually similar to the proof of

correctness of A).

First, we construct an acyclic graph of all writes according to causality. If two writes are on

the same object, then we add a directed edge from the write with the lower timestamp to the

higher one. If two writes can happen at the same timestamp, then we augment timestamps by

breaking the tie using client IDs. After the addition, the graph is still acyclic. We consider all

possible topological sorts of the graph. We also define the relation → between any two writes

w1, w2 as follows. If w1 → w2, then either w1� w2, or w1 and w2 are on the same object

while w1 is of a lower timestamp, or there exists w3 such that w1 → w3 and w3 → w2. Clearly,

relation → captures the order between two writes in topological sorts.

Second, for each client C , if we add C ’s read-only transactions one by one, then either we

succeed in one topological sort, or we find the first transaction T such that all topological

sorts are incorrect. To examine C ’s read-only transactions, we augment relation → by adding

(t x1, t x2) if at least one transaction between t x1 and t x2 is done by C and t x1� t x2, and

by transitivity. The relation is still acyclic. Suppose that for some client C , all topological

sorts are incorrect. Let T be the first transaction such that all topological sorts are incorrect.

There are two possibilities: (1) T reads a single object; (2) T reads multiple objects. In the first

possibility, let RT = {r (a)u}. In any topological sort where C ’s read-only transactions before T

are put legally, either some of C ’s transaction (a single-object write transaction or a read-only

transaction) done before T is put after w(a)u∗, or some of C ’s write done after T is put before

w(a)u. For the former, for any transaction t x done by C before T that is ordered after w(a)u∗

in a topological sort, w(a)u∗ → t x does not hold. (Suppose otherwise that w(a)u∗ → t x holds.

If t x writes a, by the definition of →, t x is of a higher timestamp than a. If t x reads a, still by

the definition of →, there exists some write w(a)u∗∗ of a timestamp no smaller than w(a)u∗

90

3.5. Alternative Protocols

such that t x returns u∗∗. If t x neither writes nor reads a, again by the definition of →, either

w(a)u∗ ends before t x starts (by program-order causality) or u∗ is readable at the server

before t x starts (by read-from causality). In any of the cases above, T which follows t x should

return a value of a with a higher timestamp than that of u. A contradiction.) As a result, we

can move t x as well as its precedence according to relation → before the first w(a)u∗ after

w(a)u in a given topological sort, and reach a contradiction: the resulting sort respects →
and T can be put immediately before w(a)u∗ to be legal. For the latter, for any write w done

by C after T that is ordered before w(a)u in a given topological sort, w → w(a)u does not

hold. (Suppose otherwise that w → w(a)u holds. Then the timestamp of w is lower than that

of w(a)u. Therefore the timestamp of T is also lower than that of w(a)u, which leads T to

be unable to return u. A contradiction.) As a result, we can move w as well as its successors

according to relation → after w(a)u, and reach a contradiction: the resulting sort respects →
and T can be put immediately after w(a)u to be legal.

Thus we exclude the first possibility. In the second possibility, we first prove that every

transaction T satisfies Lemma 10. Then given a topological sort, given any read r (a)u ∈ RT ,

we collect set Wu of such write w(o)v∗ that (1) w(a)u is of a smaller timestamp than w(a)u∗

and w(a)u∗ is ordered before w(o)v∗ in the sort, and (2) r (o)v∗ ∈ RT . We also collect in Wu

the read-only transactions of C done before T which are put after any w(a)u∗ of a higher

timestamp than w(a)u in the sort. Any such read-only transaction t x satisfies w(a)u∗ → t x

does not hold for any w(a)u∗. We move Wu as well as its precedence according to relation

→ before the first w(a)u∗ after w(a)u in the sort. In the resulting sort, all C ’s read-only

transactions before T are put legally.

Lemma 10 (A correct snapshot for the timestamp-based implementation). Let T be any

transaction that contains at least two reads. Given any two reads r (a)u,r (o)v∗ ∈ RT , if ∃w(a)u∗

such that w(a)u is of a smaller timestamp than w(a)u∗, then w(a)u∗ → w(o)v∗ does not hold.

Proof of Lemma 10. By contradiction. Suppose that w(a)u∗ → w(o)v∗ holds. Then before

w(o)v∗ starts, a write on object a with a timestamp no lower than the timestamp of w(a)u∗

has ended. Therefore when T starts, since the global accurate clock is accessible to every

process, the server which stores object a has a value u∗∗ with a timestamp no lower than the

timestamp of w(a)u yet lower than the timestamp of T . This leads T to return u∗∗ rather than

u, a contradiction.

Given a topological sort, we repeat the procedure above from the first write which corresponds

to a read in RT to the last one. We then obtain a topological sort which respects →, where every

read-only transaction done by C before T is legal and no write w(a)u∗ of a higher timestamp

than w(a)u is before w(o)v∗ for any r (a)u,r (o)v∗ ∈ RT . Let α be C ’s last transaction before

T . Let β be C ’s first write after T . There are three possibilities in the resulting sort for the

position of the last write wl ast which corresponds to a read in RT : (1) wl ast is before α; (2)

wl ast is between α and β; and (3) wl ast is after β. In the first case, if there is any write we of

the same object as wl ast between wl ast and α, then we further move the first we (which is

91

Chapter 3. The Complexity of Causal Transactions

between wl ast and α) as well as its successors according to relation → after α; then we put

T immediately after α, a contradiction. In the second case, we simply put T after wl ast , a

contradiction. In the third case, by the use of accurate global clock, β→ wl ast does not hold;

we can move β as well as its successors according to relation → after wl ast ; then we put T

immediately after wl ast , a contradiction. Therefore, B is correct given the access to a global

accurate clock.

As a result, B shows that Theorem 8 can be circumvented given the access to a global clock

and the use of non-oblivious algorithms. In addition, as shown by B, the access to the global

clock guaranteed for clients is sufficient for the circumvention of Theorem 8. On the other

hand, it is also necessary: the proof of Theorem 8 holds if only servers can access the global

clock (while a client request is still oblivious to its local clock). Although the access to a global

accurate clock circumvents the impossibility result of Theorem 8, the proof of Theorem 8 still

holds even if the global accurate clock is accessible to all processes.

Invisible fast read-write transactions

We next show that given the access to a global accurate clock and an upper bound u on the

communication delay, we can adapt our algorithm B above to work for read-write transactions.

In other words, given the access to a global accurate clock and an upper bound u on the

communication delay, Theorem 7 can be circumvented. Let us call the modified algorithm by

B+. Now given the upper bound u, a client imposes that every transaction is executed for a

time period of 2u; when returning a value to some read of an object o, instead of comparing

with the timestamp t s of the transaction in question, the server compares the timestamp of

each value of o with t s −2u.

Now to prove the correctness of B+, we define relation → between any two transactions

t x1, t x2 which contain a non-empty set of writes as follows. If t x1 → t x2, then either t x1� t x2,

or t x1 and t x2 have their write set overlap on the same object while the timestamp t s1 of t x1

and t s2 of t x2 satisfy t s1 < t s2 −2u, or there exists t x3 such that t x1 → t x3 and t x3 → t x2. The

proof starts with all topological sorts of a graph that represents the relation → defined here

and continues with the examination of each transaction that includes a non-empty set of

reads done by a client. The proof of B+ is similar to that of B and therefore omitted.

3.6 Storage Assumptions

For presentation simplicity, we made an assumption that servers store disjoint sets of objects.

In this section, we show how our results apply to the non-disjoint case. A general model of

servers’ storing objects can be defined as follows. Each server still stores a set of objects, but

no server stores all objects. For any server S, there exists object o such that S does not store

o. In this general model, when a client reads or writes some object o, the client can possibly

request multiple servers all of which store o. Below we first adapt progress property to the

92

3.6. Storage Assumptions

general model in a way that is decoupled from the underlying distributed protocols of the

storage system. Then w.l.o.g., we may assume that when client C accesses o, C requests all

servers that store o.

3.6.1 Weak progress property

As promised previously, we adapt our previous definition of progress property (Definition 9

and Definition 10) to the general model of servers’ storing objects. As shown in Definition

18 and Definition 19, weak progress only guarantees that if one write causally precedes the

other, then the former one is eventually overwritten. Such weakness in the definition is to

avoid any specific assumption on the underlying distributed protocol of the storage system in

the general model. In the general model, a distributed protocol may choose an arbitrary rule

in deciding which value is visible depending on the application (different from the application

of the natural rule that the last writer wins under the previous assumption), especially for

causally related writes. Hence it is necessary to define weak progress to cover all such rules. As

a result of weaker progress guarantee in the general model, as we show later, the constructions

of executions for the proofs of two impossibility results are more specific than those for our

previous proofs.

Definition 18 (Weak eventual visibility). If we say a write w in transaction T is weakly even-

tually visible, then there exists some finite time τx,v such that for any transaction Tr x which

starts no earlier than τx,v and has r (x)vnew ∈ RTr x , vnew �= ⊥ and any transaction Tw x such

that w(x)vnew ∈ WTw x does not satisfy Tw x � T . (Here Tw x can be T , and if T is the only

transaction so far, then Tw x = T .)

Definition 19 (Weak progress). A causally consistent storage guarantees weak progress if

every write is weakly eventually visible.

3.6.2 Impossibility of fast transactions

We sketch here the correctness of Theorem 7 in the general model. In the general model, the

proof of Theorem 7 still constructs a contradictory execution Ei mp . The construction goes by

induction as shown in Proposition 6. To satisfy causality, by induction, there is a sequence of

an infinite number of messages in the construction Ei mp , which thus violates progress and

shows the correctness of this impossibility result. We sketch below only the construction of

Ei mp . The proof of the violation of progress is the same as the previous proof of Theorem 7

and is then omitted.

Different from the previous construction, the construction of Ei mp starts with no transaction.

Client Cw writes a first transaction that writes to all objects and reads no object. Suppose that

at time tst ar t , the writes of the first transaction are all visible. After tst ar t , Cw does a second

transaction W OT that writes to all objects (to have the transaction span multiple servers) and

reads no object at time tw . All other clients do no transaction. Similarly with the previous

93

Chapter 3. The Complexity of Causal Transactions

construction, the construction of Ei mp goes as long as at least one write of W OT is not visible.

Proposition 6 (Induction under the general storage assumption). After tw , at least one server

must send one message. Let M0 be the set of messages which a server sends after tw . For the first

server which receives a message in M0, denote the message by m0. Thus we construct Ei mp to

send m0 after tw .

For any positive number k, assume that in Ei mp , m0,m1, . . . ,mk−1 have been sent. Then after

the reception of mk−1, at least one server must send one message. Let Mk be the set of messages

which a server sends after the reception of mk−1. For the first server which receives a message in

Mk , denote the message by mk . Thus we construct Ei mp to send mk after the reception of mk−1.

Proof of Proposition 6. Proposition 6 clearly consists of the base case and the inductive step.

The proof of the base case is by contradiction. Suppose that after tw , no server sends any

message and eventually all writes of W OT are visible. Then we can construct an execution E+

based on Ei mp . In E+, we let client Cr do a read-only transaction ROT that reads all objects,

send a message to each server, and receive at most one message from each server. We schedule

the message exchange between Cr and all servers according to Definition 11. By weak eventual

visibility, in some execution E+, ROT returns all values written by W OT . We call this execution

by E . In E , for each server S, let mr esp,S be the message which Cr receives from S. Let ss be

the set of such server S that mr esp,S reveals some version written by W OT . Let R be a server in

ss. We then construct an execution Enew based on E . In Enew , we let client Cr do a read-only

transaction ROT that reads all objects while we change the schedule of message exchange

between Cr and all servers. More specifically, we let R receive Cr ’s message at the same time

as in E but different from E , we let all servers except for R receive Cr ’s message at some same

time before tw , and the rest of the schedule follows Definition 11. Therefore, R still replies to

Cr the same message as inE , which reveals some version written by W OT ; however, all servers

except for R reply with messages that reveal some version written by the first transaction of

Cw . As a result, the return value of ROT in Enew breaks causal consistency, which leads to a

contradiction. We then conclude the correctness of the base case; i.e., after tw , at least one

server sends some message before eventually all writes of W OT are visible, and we construct

Ei mp to send m0 after tw .

The proof of the inductive step is similar and also by contradiction. Suppose that after the

reception of mk−1, no server sends any message and eventually all writes of W OT are visible.

We construct an execution E+ based on Ei mp , of which the construction is similar to that

in the base case. By weak eventual visibility, in some execution E+, ROT returns all values

written by W OT . We still call this execution by E , define mr esp,S for each server S, and use

the notation ss. Let P be the sender of mk−1. If P ∈ ss, then we let R = P ; otherwise, R is a

server in ss. We then construct an execution Enew based on E . In Enew , we let client Cr do a

read-only transaction ROT that reads all objects while we change the schedule of message

exchange between Cr and all servers. More specifically, we let {R,P } receive Cr ’s message

at the same time as in E but different from E , we let all servers except for {R,P } receive Cr ’s

94

3.6. Storage Assumptions

message at some same time between the reception of mk−2 (if there is one) and the reception

of mk−1, and the rest of the schedule follows Definition 11. In addition, if mk−1 is not sent to

R, then we delay mk−1 from being received in Enew ; otherwise, we allow mk−1 to be received

at the same time as in E . Then {R,P } still replies to Cr the same message as inE , which reveals

some version written by W OT . However, according to the correctness of case k −1 (i.e., the

assumption for the correctness of case k), all servers except for {R,P } are unable to distinguish

between whether message mk−1 is sent or not. As a result, all servers except for {R,P } reply

with messages that reveal some version written by the first transaction of Cw . The return value

of ROT in Enew breaks causal consistency, which leads to a contradiction. We thus conclude

that after the reception of mk−1, at least one server sends some message before eventually all

writes of W OT are visible, and we construct Ei mp to send mk after the reception of mk−1.

3.6.3 Impossibility of fast invisible transactions

We sketch here the correctness of Theorem 8 in the general model. In the general model,

the proof of Theorem 8 still goes by contradiction and we use the same assumption for

contradiction, Proposition 4, recalled in Proposition 7. The notations D, D1, S1, M1, t0, T2 and

D2, S2, M2 follow the same definitions. The main steps remain the same: (1) we construct two

executions E1 and E2 following Proposition 7; (2) we construct execution E1,2 based on E1 and

E2; and (3) we show that E1,2 violates causal consistency. Our sketch below focuses on the

construction of E1, E2 and E1,2.

Proposition 7 (Assumption for contradiction). For any execution E1 which schedules S1 by fast

transactions, for some D2, some execution E2 where (1) D1 does not invoke S1 but D2 invokes S2

is the same as E1 except for the message exchange events M1 and M2.

Different from the previous construction, the construction of E1 (E2) starts with no transaction.

Some client C ∉D writes, firstly, each object once. Suppose that at time tst ar t , these writes are

all visible. Then we construct E1 (E2) starting from tst ar t . We consider a read-only transaction

ROT which reads all objects. For i ∈ {1,2}, in Ei , every invocation in Si of ROT starts at the

same time t0 and ends at the same time T2. Every message which a client in Di sends (to a

server) arrives at some same time T1. For each server, after T1 and as long as this server is

still about to send a message to a client in Di , the server receives no message from any other

server. This time period for each server P while P receives no message from any other server

is the same in E1 and E2. Each client in Di receives at most one message from each server and

returns ROT at time T2.

After T2, C writes again all objects. Let o1,o2, . . . ,onob j be the set of all objects. Then C executes

writes w = w(oi)vi , i = 1,2, . . . ,nob j sequentially, which establishes ∀k ∈ Z, 2 ≤ k ≤ nob j ,

w(ok−1)vk−1 � w(ok)vk . All writes in w are eventually visible. Let τ be the time when

v1, v2, . . . , vnob j are visible in both E1 and E2.

W.l.o.g., assume that D1\D2 �= �. After τ, in both E1 and E2, one same client Cr in D1\D2 �= �

95

Chapter 3. The Complexity of Causal Transactions

requests the same read-only transaction ROT that reads all objects. (In E1, Cr has requested

ROT once, while in E2, Cr has not.) We schedule these transactions according to Definition 11

and moreover, any message which Cr send to a server arrives at the same time. In either E1 or

E2, for each server S, let mr esp,S be the message which Cr receives from S. Let ss be the set of

such server S that mr esp,S reveals some version written by some write in w . Let R be a server

in ss. Note that ss\{R} �= �. Let Π be the set of all servers. The construction of E1,2 is the same

as that in the previous proof of Theorem 8 by substituting {R} for PY and Π\{R} for PX , which

we sketch below.

The execution E1,2 is based on E1 and E2 starting from t0. Every client in D1 ∪D2 requests

ROT that reads all objects at time t0, Π\{R} receives the messages which D1 sends at the

same time T1 as in E1, and R receives the messages which D2 sends at the same time as in

E2. (Clearly, those messages which D1\D2 sends to R are delayed as well as those messages

which D2\D1 sends to Π\{R}.) Therefore, by Proposition 7, Π\{R} and R reply to a client in

D in the same way as in E1 and E2 respectively. The critical messages which Π\{R} sends to

Cr ∈D1\D2 are received at the same time as in E1. If Π\{R} sends a non-critical message to Cr ,

then the non-critical message is delayed after the construction of E1,2 completes. The rest of

the schedule regarding messages between servers is the same as E1 (E2). Furthermore, after

T2, C issues w sequentially which is the same as E1 (E2).

After τ, R receives a message from Cr (a message previously delayed) at the same time as in E2

while Cr requests ROT . By τ, R is unable to distinguish between E1,2 and E2 and thus by the

time when R sends a critical message to Cr , R is still unable to distinguish between E1,2 and E2.

As a result, R sends the same mr esp,R to Cr in E1,2 as E2, which reveals some version written

by some write in w . We schedule Cr to receive mr esp,R at the same time as in E2 as well. Since

Cr has not requested ROT before, the return value of ROT solely depends on these critical

messages from Π. However, the critical messages received from Π\{R} are sent before w occurs

and therefore may only reveal versions written by C in the first pass of writes to all objects. The

return value of Cr ’s ROT then violates causal consistency. This gives a contradiction, showing

that Proposition 7 is incorrect and therefore Theorem 8 is correct in the general model.

3.7 Related Work

3.7.1 Causal consistency

Ahamad et al. [42] were the first to propose causal consistency for a memory accessed by

read/write operations. Raynal et al. [43] formally defined causal transactions. Bouajjani

et al. [117] formalized the verification of causal consistency. A large number of systems

[35, 118, 37, 36, 38, 41] implemented transactional causal consistency, while some [35] defined

formally and strengthened causal consistency to include convergence property, which concerns

the conflict resolution of two updates that are not causally related. Our results also hold for

this strengthened causal consistency.

96

3.7. Related Work

In the literature, extended notions of causal consistency are also proposed, considering

non-transactional systems. These notions include real time causal consistency [119], which

additionally respects the real-time order of any two operations. To formalize the consistency

model of replication schemes (an issue orthogonal to the problem considered in this chapter),

Attiya et al. [120] and Xiang and Vaidya [121] proposed related notions of causal consistency

based on the events that are executed at the servers (rather than the histories of operations

issued by the clients). More specifically, Attiya et al. [120] defined observable causal consis-

tency for servers where (1) the program-order causality relation is tracked between clients’

operations at the same server, but (2) there is no read-from causality relation defined and (3)

the concurrent writes to the same object at different servers are resolved. Xiang and Vaidya

[121] introduced replica-centric causal consistency where the causality relation is between

the following two types of events at the servers: (1) the update issued by a server (meaning

that the server receives the update from a client and then starts to propagate the update to

other servers) and (2) the update applied by a server (meaning that the server receives the

propagation of the update from another server).

3.7.2 Causal read-only transactions

Most implementations do not provide fast (read-only) transactions. COPS [35] and Eiger [36]

provide a two-round protocol for read-only transactions. Read-only transactions in Orbe [37],

GentleRain [38], Cure [40] and Occult [41] can induce more than one-round communication.

Read-only transactions in ChainReaction [118] can induce more than one-round communica-

tion as well as abort and retry, resulting in more communication. Eiger-PS [44] provides fast

transactions and satisfies process-ordered serializability [44], stronger than causal consistency;

yet in addition to the request-response of a transaction, each client periodically communicates

with every server. Our Theorem 7 explains Eiger-PS’s additional communication. COPS-SNOW

[44] provides fast read-only transactions but writes can only be performed outside a trans-

action; moreover, any read-only transaction in COPS-SNOW is visible, complying with our

Theorem 7 and Theorem 8. If each data center is modelled as a process which stores a copy of

all objects, then a transactional store, SwiftCloud [39], can provide fast read-only transactions

(between a data center and a client). However, in addition to the request-response of a trans-

action, a data center can send a client a stream of update notifications [39]. Our Theorem 7

explains at least one of the two designs (the full copy and out-of-scope communication) is

necessary.

3.7.3 Impossibility results

Existing impossibility results on storage systems have typically considered stronger consis-

tency properties than causality or stronger progress conditions than eventual visibility. Brewer

[106] conjectured the CAP theorem that no implementation guarantees consistency, and avail-

ability despite network partitions. Gilbert and Lynch [107] formalized and proved Brewer’s

conjecture in partially synchronous systems. They formalized consistency by atomic objects

97

Chapter 3. The Complexity of Causal Transactions

[105] (which satisfy linearizability [104], stronger than causal consistency). Considering a

storage implemented by data centers (clusters of servers), if any value written is immediately

visible to the reads at the same data center (to which the write request is sent), and some client

can access two objects at two data centers respectively, then Roohitavaf et al. [122] proved

the impossibility of ensuring causal consistency and availability despite network partitions.

Their proof (as well as the proof of the CAP Theorem) relies on message loss in face of network

partition. On the contrary, our impossibility results do not assume message loss, and thus are

not implied by their proof.10 Lu et al. [44] proved the SNOW theorem, saying that fast strict

serializable transactions [112, 113] (satisfying stronger consistency than causal consistency)

are impossible. As strict serializability is stronger than causal consistency, the SNOW theorem

does not imply our results.

The impossibility result, the CAC theorem [119] states that no implementation guarantees one-

way convergence, availability, and any consistency stronger than real time causal consistency

assuming infinite local clock events and arbitrary message loss, in the model where each pair

of processes can communicate. (By contrast, in our model, we assume two clients do not

communicate.) Here one-way convergence [119] is a progress property conditioned on the

communication between each pair of processes (rather than a progress property of a client’s

read, different from our definition of eventual visibility). This turns the CAC theorem an

impossibility result for replication schemes (an issue orthogonal to the problem considered in

this chapter). As mentioned earlier, Attiya et al. [120] and Xiang and Vaidya [121] formalized

some related notions of causal consistency in the context of replication schemes. According

to their notions, Attiya et al. [120] proved that a replicated store implementing multi-valued

registers cannot satisfy any consistency strictly stronger than observable causal consistency,

while Xiang and Vaidya [121] proved that for replica-centric causal consistency, it is necessary

to track down writes.

3.7.4 Transactional memory

In the context of transactional memory, if the implementation of a read-only operation (in a

transaction) writes a base shared object, then the read-only operation is said to be visible and

invisible otherwise [123]. Known impossibility results on invisible reads of TM assume stronger

consistency than causal consistency. Attiya et al. [124] showed that no TM implementation

ensures strict serializability, disjoint-access parallelism [124]11 and uses invisible reads, the

proof of which shows that if writes are frequent, then a read-only transaction can not terminate

in a finite number of steps. Peluso et al. [125] considered any consistency that respects the

real-time order of transactions (which causal consistency does not necessarily respect), and

proved a similar impossibility result. Perelman et al. [126] proved an impossibility result for a

10Although the CAP theorem can be considered as an impossibility result of a strongly consistent replication
system, as we do not assume message loss, even in our extended model of replicated storage systems, our
impossibility results are not implied by the CAP theorem or its proof.

11Disjoint-access parallelism [124] requires two transactions accessing different application objects to also
access different base objects.

98

3.8. Concluding Remarks

multi-version TM implementation which provides invisible read-only transactions, ensures

strict serializability and maintains only a necessary number of versions; the proof of this

impossibility result focuses on garbage collection of versions [126]. None of the results or

proofs above imply our impossibility results.

3.8 Concluding Remarks

Our impossibility results establish fundamental limitations on the performance on transac-

tional storage systems. The first impossibility basically says that fast read-only transactions

are impossible in a general setting where writes can also be performed within transactions.

The second impossibility says that in a setting where all transactions are read-only, they can

be fast, but they need to visible. A system like COPS-SNOW [44] implements such visible

read-only transactions that leave traces when they execute, and these traces are propagated

on the servers during writes. Recall that we provide in Section 3.5 a variant algorithm where

these traces are propagated outside writes, demonstrating that the complexity of these traces

does not arise due to writes.

Clearly, our impossibilities apply to causal consistency and hence to any stronger consistency

criteria. They hold without assuming any message or node failures and hence hold for failure-

prone systems. In Section 3.3 and Section 3.4, for presentation simplicity, we assumed that

servers store disjoint sets of objects, but our impossibility results hold without this assumption

as shown in Section 3.6. Some design choices could circumvent these impossibilities like

imposing a full copy of all objects on each server (as in SwiftCloud [39]), or periodic communi-

cation between servers and clients (as in Eiger-PS [44]). Each of these choices clearly hampers

scalability.

We considered an asynchronous system where messages can be delayed arbitrarily and there

is no global clock. One might ask what happens with synchrony assumptions. If we assume a

fully synchronous system where message delays are bounded and all processes can access a

global accurate clock, then our impossibility results can both be circumvented. We give such a

timestamp-based algorithm in Section 3.5. If we consider however a system where communi-

cation delays are unbounded and all processes can access a global accurate clock, then only

our Theorem 7 holds (while our timestamp-based algorithm can still circumvent Theorem 8).

In this sense, message delay is key to the impossibility of fast read-only transactions, but not

to the requirement that they need to be visible in the restricted model where all transactions

are read-only (and writes are outside the scope of a transaction).

99

4 The Complexity of Optimistic Secure
Transactions1

4.1 Introduction

In fair computation (of a deterministic function) [48, 6], n parties possess n pieces of informa-

tion and need to output the function of these n pieces of information (the inputs) atomically.

Namely, a party obtains the output of the function if and only if the other n −1 parties obtain

the same output. A prominent example is auctions: after n parties offer a price for some item,

they wish to determine the highest price and the winner without ambiguity, e.g., when more

than one party claims to win the item. A solution is the fair computation of the n bids (prices).

The difficulty of fair computation stems from the fact that a party might be malicious (dishon-

est) and try to obtain other parties’ inputs, twist other parties’ output, or arbitrarily delay other

parties from obtaining an output. Still, honest parties should eventually obtain an output

in a fair manner: they should all obtain the function of the n inputs, or all obtain a specific

value ⊥ (denoted abort in [48]). In an asynchronous context, rather than waiting forever for

some message, any party may decide to stop the computation. Such ability of a party to stop

at any time without jeopardizing fairness has been called timely termination [48]. As a matter

of fact, fair computation is in general impossible without a trusted third party [50]. Yet, this

third party is not needed in every execution of a fair computation protocol.

Optimistic fair computation stipulates that the third party does not need to be invoked if all n

parties are honest [48, 6, 128]. An execution where n honest parties output without invoking

the third party is called an optimistic execution [48, 128]. Given that cheating is seldom and

the third party is considered a bottleneck, optimism is practically appealing. To claim true

practicality, however, optimistic executions should be efficient. To be specific, the number of

messages exchanged among n honest parties (which compute the function without resorting

to the third party) should not be prohibitive. Until our work (presented in this chapter), the

optimal number of messages was unknown.

1Postprint version of the article published in DISC 2016: Rachid Guerraoui and Jingjing Wang. “Optimal Fair
Computation” [127]

101

Chapter 4. The Complexity of Optimistic Secure Transactions

We prove in this chapter that �+2n −3 is the optimal number of messages that an optimistic

execution of optimistic fair computation may achieve in the presence of n−1 potentially mali-

cious parties in an asynchronous network, where � is the length of the shortest sequence that

contains all permutations of n symbols as subsequences [129]. Given recent results in combi-

natorics [58, 59, 60, 130], the optimal number of messages for optimistic fair computation is 4

for n = 2, n2 +1 for 3 ≤ n ≤ 7, and asymptotically Θ(n2) for n ≥ 8.2

The main idea behind our proof of the �+2n−3 lower bound is the identification of a decision

propagation pattern according to which an honest party reaches an agreement with the others.

The decision propagation occurs when some party decides to stop the computation. The

pattern can be between any two parties P and Q. To get an intuition, consider an optimistic

execution E , let event EP =“P receives message mP ” and let event EQ =“Q receives message

mQ ”. Let ē be the complement of an event e. To ensure timely termination in an asynchronous

network, an honest party P (Q)’s stop could result from ĒP (ĒQ). However, a malicious P ’s

stop can impose an honest Q’s stop by pretending ĒP . If when P and Q complete E , EP

occurs before EQ and Q does not receive any message between EP and EQ , then before EQ

happens, Q is unable to distinguish whether EP or ĒP occurs. As a result, malicious P ’s decision

may propagate to honest Q here. To prevent fairness from being jeopardized by malicious

propagation, in the context of possibly n −1 malicious parties, every party should participate

in this propagation so that none has a chance to pretend being honest.

This yields a subsequence of n events EP (one for each party P) and n messages (whose

destinations are the n parties) in E . Clearly, the order of the parties does not matter and

therefore, any permutation of the n events must occur as a subsequence in E . Hence we

establish a relation between the least number of messages of an optimistic execution and �, the

length of the shortest sequence that contains all permutations of n symbols as subsequences.

Our lower bound on the number of messages is tight in the following sense. We present an

(�+2n −3)-message optimistic fair computation scheme of some function f given a shortest

permutation sequence s. Our protocol, where the n parties are honest and compute without

the third party, consists of three phases: (a) the n parties send verifiable encryption [133] of

their n inputs respectively, in case they recover those inputs (if needed) in the non-optimistic

execution, which defines the first n messages; (b) the n parties exchange �− 2 messages

defined by s; and (c) the n parties exchange the concatenation of the n inputs, which defines

the last n −1 messages. The �−2 messages m1m2 . . .m�−2 in phase (b) have their sources

and destinations defined by the sequence s = s1s2 . . . s� as follows. The party represented by

symbol s j is the source of m j−1 for j = 2, . . . ,�−1, and the destination of m j−2 for j = 3,4, . . . ,�.

(s1 is the source of the last message m0 of phase (a) and s2 is the destination of m0.) When a

party resorts to T in a non-optimistic execution, T follows the idea of decision propagation to

2Newey [58] (and then many others [59, 60, 130, 131, 132]) studied the length � of the shortest permutation
sequence. Although Newey [58] showed that �= 3 for n = 2, and �= n2 −2n +4 for 3 ≤ n ≤ 7, the exact � for n ≥ 8
is still considered as an open problem [59, 60]. Up until now, the best upper bound is �n2 − 7

3 n + 19
3 � for n ≥ 7 [60],

while a lower bound of � is of the form n2 −cn7/4 +ε for some constant c and some ε> 0 [130].

102

4.2. Model and Definitions

decide an output. The pattern is the same as shown in our proof of the lower bound so that

the number of messages in every optimistic execution is minimal.

As we will explain in Section 5, many results have been published on problems related to

fair computation [51, 52, 53, 54, 55, 56]. None implies our lower bound. On the other hand,

our (�+2n −3)-message optimistic fair computation scheme can be used to implement fair

exchange of certain digital signatures (including Schnorr signatures [134], DSS signatures [135],

Fiat-Shamir signatures [136], Ong-Schnorr signatures [137], GQ signatures [138]). Thus, our

scheme is also a message-optimal optimistic fair exchange scheme [48]. Moreover, combined

with our proof of the lower bound, this optimistic fair exchange scheme of digital signatures

also implies that �+2n −3 is the optimal number of messages for optimistic fair contract

signing [54].

The rest of this chapter is organized as follows. Section 4.2 presents our general model and

defines optimistic fair computation. Section 4.3 presents our lower bound on the number of

messages. Section 4.4 presents our (�+2n −3)-message optimistic fair computation scheme.

Section 4.5 discusses related work.

4.2 Model and Definitions

4.2.1 The parties

We consider a set Ω of n parties P1,P2, . . . ,Pn (sometimes also denoted by P , Q). These parties

are all interactive in the sense that they can communicate with each other by exchanging

messages. All parties are computationally-bounded [139] in the sense that they run in time

polynomial in some security parameter s.3

In addition to the n parties, we also assume a trusted third party T . T follows the protocol

assigned to it. The communication with T is such that when T is communicating with Pi ,

P j needs to wait for P j ’s turn to communicate with T for any two parties Pi ,P j ∈ Ω, i , j ∈
{1,2, . . . ,n}. We assume that T is also computationally bounded.

At most n −1 parties can be malicious. A malicious party could deviate arbitrarily from the

protocol assigned to it. The malicious party could interact arbitrarily with the others as well as

T . For example, a malicious party may drop certain messages. A party that crashes at some

point in time is considered as a malicious party that drops all the messages from that point.

Malicious parties may also collude. (The goal of malicious parties and their collusion can

be breaking fairness, e.g., to obtain an output for themselves and to prevent an output to an

honest party. Fairness is defined formally later in Definition 22.)

Communication channels do not modify, inject, duplicate or lose messages. Every message

3Hereafter, when we say that a probability is negligible, we mean that the probability is a negligible function g (s)
of the security parameter s; i.e., ∀c ∈N, ∃C ∈N such that ∀s >C , g (s) < 1

sc . The definition of negligible function is
later repeated in Definition 24.

103

Chapter 4. The Complexity of Optimistic Secure Transactions

sent eventually reaches its destination. Any modified, injected, duplicate, or lost message is

considered to be due to malicious parties. The delay on message transmission is finite but

unbounded. Messages could be reordered. Communication channels are authenticated and

made secure by Transport Layer Security [140]. No party can be masqueraded and no message

can be eavesdropped.

4.2.2 Fair computation

We consider the problem of optimistic fair computation in the classical sense of [6, 48]. The

problem involves a deterministic function f to be computed by the n parties. Function f is

agreed upon by the n parties in advance. We assume that f takes n strings x1 ∈ {0,1}�1 , x2 ∈
{0,1}�2 , . . . , xn ∈ {0,1}�n as inputs and returns z ∈ {0,1}�z as its output.

Definition 20 (Computation). A computation scheme for f is a collection (P1,P2, . . . ,Pn) of n

algorithms. The algorithms can carry out two interactive protocols:4

• Compute: Pi , i = 1,2, . . . ,n is initialized with a local input xi . If Pi finishes this protocol,

Pi returns a local output oi which can take the following values: z ∈ {0,1}�z or ⊥. If

Compute is interrupted by Stop (which we introduce below), Compute returns the same

output as Stop.

• Stop: This is the protocol invoked by Pi when Pi wants to stop the computation. Pi

can invoke this protocol at any point in time. Pi obtains Pi ’s status of Compute so far

(i.e., the sequence of messages that have arrived at Pi so far) as a local input to Stop. Pi

makes a local output oi which can take the following values: z ∈ {0,1}�z , or ⊥.

In the classical definition of fair computation [6], the problem is defined in the simulatability

paradigm [5], which basically expresses a correct solution to fair computation in terms of

a simulation of the ideal process. In what follows, we recall the notion of the ideal process

(Definition 21), and then fair computation (Definition 22).

Definition 21 (Ideal process [6]). The ideal process for fair computation of f is a collection

(P̄1, P̄2, . . . , P̄n , U) of n +1 deterministic algorithms. P̄i , i = 1,2, . . . ,n is initialized with a local

input xi . U is parameterized by f . P̄i sends message ai = xi to U . Messages are delivered

instantly. U returns a message mi to Pi according to Equation (4.1) as soon as a1, a2, . . . , an

have arrived at U or one message of ⊥ has arrived at U . P̄i outputs whatever U returns to it.

∀i ∈ {1,2, . . . ,n},mi =
⎧⎨
⎩

f (a1, a2, . . . , an) if a1 �= ⊥, a2 �= ⊥, . . . , an �= ⊥
⊥ if ⊥∈ {a1, a2, . . . , an}

(4.1)

4We consider Compute and Stop as such type of protocols that a party does not randomly choose whether to
send a message or not, or the party to whom a message is sent. Nevertheless, the contents of messages exchanged
are allowed to be randomized.

104

4.2. Model and Definitions

The process is ideal in the sense that among n +1 parties, the information of a private input

is only exposed to the universally trusted U . We explain the meaning of this universal trust

when we present Definition 22. In Definition 22, collusion between malicious parties is

represented as malicious parties controlled by an adversarial algorithm A . In this case, A also

controls the communication in the sense that A can delay messages arbitrarily. In addition,

Definition 22 distinguishes between the case where all parties are honest, for which we define

the completeness property, and the case where at least one party is malicious, for which we

define the fairness property. We remark that the fairness property here encompasses both

fairness and privacy. As shown by Definition 22, even malicious parties who try to obtain other

parties’ private inputs do not learn any information beyond whatever an honest party can, i.e.,

whatever is revealed by the computation result of the function.

Definition 22 (Fair computation5). A computation scheme α solves fair computation for f

[6] if it satisfies the following properties:

• Fairness: for any e ∈N,1 ≤ e ≤ n −1 and any e malicious parties Pd1 ,Pd2 , . . . ,Pde , for any

computationally bounded algorithm A that controls the e malicious parties6, there

exists a computationally bounded algorithm S that controls P̄d1 , P̄d2 , . . . , P̄de
7 such

that for any x1, x2, . . . , xn , OP1,P2,...,Pn ,A (x1, x2, . . . , xn) and OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) are

computationally indistinguishable [141, 142];

• Termination: If an honest party Pi invokes Stop, then Pi eventually outputs.

• Completeness: ∀x1, x2, . . . , xn , if P1,P2, . . . ,Pn are honest and none invokes Stop, then all

parties output z = f (x1, x2, . . . , xn); if P1,P2, . . . ,Pn are honest and some invokes Stop,

then either all parties output z = f (x1, x2, . . . , xn), or all parties output ⊥.

• Non-triviality: There is at least one execution in which P1,P2, . . . ,Pn are honest and

none invokes Stop.

Assumptions and notations:

• w.l.o.g., Pd1 ,Pd2 , . . . ,Pde output nothing but A may output arbitrarily8, and similarly,

P̄d1 , P̄d2 , . . . , P̄de output nothing but S may output arbitrarily; and

5The original definition in [6] is ambiguous when all parties are honest: (1) if the asynchronous network delays
every message, then to ensure termination, every honest party should output ⊥ at some point in time; however, by
the original definition, all honest parties output z, except with negligible probability, which yields a contradiction;
and (2) if in a protocol, all parties send no message and only outputs ⊥, then by the original definition, this protocol
also matches the ideal process, which however is a trivial protocol.

6A also plays the role of the asynchronous network as defined in Section 4.2. The probability of the joint output
between honest parties and an adversarial algorithm is taken over the randomness of the adversarial algorithm.

7In the ideal process, S sees xd1
, xd2

, . . . , xde
, may change ad1

, ad2
, . . . , ade

and also sees md1
,md2

, . . . ,mde
but

S cannot see other messages from or to U , or U ’s internal state (which makes U universally trusted).
8The assumption that a malicious party outputs nothing is for definition only. In practice, a malicious party

may output arbitrarily.

105

Chapter 4. The Complexity of Optimistic Secure Transactions

• OP1,P2,...,Pn ,A (x1, x2, . . . , xn) denotes the joint output of P1,P2, . . . ,Pn ,A when running α

for x1, x2, . . . , xn , and OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) denotes the joint output of P̄1, P̄2, . . . , P̄n ,S

when running the ideal process for x1, x2, . . . , xn .

Definition 23 (Optimistic fair computation). A fair computation scheme is optimistic [48] if it

satisfies the following property.

• Optimism: ∀x1, x2, . . . , xn , if P1,P2, . . . ,Pn are honest and none invokes Stop, then all

parties output z = f (x1, x2, . . . , xn) without interacting with T .

When P1,P2, . . . ,Pn are honest and none invokes Stop, P1,P2, . . . ,Pn carry out Compute only.

In this case, an optimistic execution is an execution of Compute, where every party finishes all

communication steps of Compute and outputs.

We focus on the class C of function f such that for any x1 ∈ {0,1}�1 , x2 ∈ {0,1}�2 , . . . , xn ∈
{0,1}�n , given any n −1 out of n strings, there are at least two possibilities for the evaluation

of f (x1, x2, . . . , xn) considering all possibilities of the missing string (e.g., if x1, x2, . . . , xn−1 are

given, then xn is the missing string). For a function f in the complement of C , a protocol

that solves optimistic fair computation can still be vulnerable to the following attack: a subset

of parties colludes, leaves with the evaluation of f immediately but an honest party outputs

⊥. In the literature [143, 144], fair protocols for the complement of C are considered, but

they ensure fairness different from Definition 21 and Definition 22 and are not the focus

here. We also assume that T does not have prior knowledge of x1, x2, . . . , xn . Therefore no

computationally bounded algorithm, even with the help of T , is able to evaluate f from any

n −1 out of the n inputs of P1,P2, . . . ,Pn for any missing input with non-negligible probability.

We call this assumption the no prior knowledge of T .

4.3 Lower Bound

In this section, we prove our lower bound on the number of messages exchanged during an

optimistic execution of optimistic fair computation. We first present an overview of our proof

and then formally prove our lower bound. Our proof of lower bound starts with preliminaries

(including a formal definition of indistinguishability) and follows the main idea presented in

the overview.

Recall that we consider those functions that cannot be evaluated by only a subset of n parties,

e.g., we do not consider constant functions. In addition, a scheme (or the Compute protocol

of a scheme) which sends no message, invokes Stop and outputs ⊥ only is excluded by the

non-triviality property (Definition 22). Thus the lower-bound is non-zero.

In Theorem 9, we express our lower bound in terms of n and �, the length of the shortest

sequence that contains all permutations of n symbols as subsequences.

106

4.3. Lower Bound

Theorem 9 (Message complexity). For any function f ∈C , for any optimistic fair computation

scheme for f (for n parties, among which n −1 can be malicious), the n parties exchange at

least �+2n −3 messages in every optimistic execution.

4.3.1 Proof overview and intuition

To have a better understanding of our proof of lower bound, we present an overview as well as

intuition which covers the main points of our proof. A detailed proof is presented later. To

prove Theorem 9, we count the number of messages in every optimistic execution. We view

every optimistic execution E as a sequence of messages ordered according to when they reach

their destinations respectively. We first pinpoint two necessary messages in E , and then we

show that between these two messages, there must exist certain patterns of messages.

Intuitively, when starting E , no party knows anything about other parties’ inputs; there is a

border-line message m∗
1 such that, after m∗

1 reaches its destination, one and only one party

knows something about all the other parties’ inputs. If any honest party Pi ∈Ω stops before

m∗
1 arrives at its destination, then Pi has no hope of outputting z = f (x1, x2, . . . , xn) even with

the help of T , by the no prior knowledge of T .

By the end of E , every party receives sufficient messages to compute z (by the optimism

property); there is another border-line message m∗
2 such that, after m∗

2 reaches its destination,

one and only one party has sufficient messages to compute z. If any honest party Pi stops

after m∗
2 arrives at its destination, Pi outputs z by the completeness property (with or without

the help of T). Figure 4.1a illustrates the two messages.

(a) Pi outputs ⊥ if Pi stops before m∗
1 ; and z if

Pi stops after m∗
2

(b) Pi decides the same value v after P j if Pi

stops between m∗
1 and m∗

2 .

Figure 4.1 – The output of Pi if Pi stops at some point in execution E

What Pi should output if it stops between m∗
1 and m∗

2 requires a closer look. Suppose that

when Pi wants to stop, Pi has not received some message mi . (We clarify some terminology

here. When we say that Pi has not received or does not receive some message mi , we mean

that Pi has not received mi but received every message with destination Pi before mi in E .

The terminology applies to any party hereafter.) When Pi wants to stop, either no other party

has decided an output (and then Pi can easily decide), or some party P j ∈Ω, j �= i has decided.

If P j claims that it has not received message m j and mi is the first message with destination Pi

after m j in E , then P j ’s decision propagates to Pi . Clearly, if P j is honest, then Pi has to decide

the same output as P j (except with negligible probability) by the fairness property. Figure 4.1b

illustrates this agreement.

107

Chapter 4. The Complexity of Optimistic Secure Transactions

This agreement between two parties induces a decision propagation pattern, which gives rise to

a certain pattern of messages in E . When P j is honest and stops due to the missing message m j ,

P j needs to enforce Pi to stop and agree on their decisions. Thus in the sequence of messages

(ordered at the beginning of our proof overview), after a message m j with destination P j , there

must exist a message mi with destination Pi so that P j could enforce Pi on the same output if

(a) P j does not receive m j , (b) P j invokes Stop and outputs ⊥, and (c) Pi does not receive mi

and invokes Stop.

Because n −1 parties can be malicious, we use this decision propagation pattern to build the

following scenario. The scenario also connects a party’s output before m∗
1 and a party’s output

after m∗
2 to the decision propagation. Suppose one party P1 stops before m∗

1 arrives at its

destination and then the other n −1 parties stop following the decision propagation pattern

above: for k = 1, we denote by m1 the message which P1 has not received when P1 stops; then

for k = 2,3, . . . ,n, if there is a message mk in E that is the first message with destination Pk

between mk−1 and m∗
2 , then Pk stops when Pk has not received mk , and if not, Pk stops after

m∗
2 arrives at its destination.

Clearly, if the pattern of the n messages whose destinations are P1,P2, . . . ,Pn does not exist

between m∗
1 and m∗

2 in E , then Pn would output z by the property of m∗
2 . However, P1, as

well as other parties P2,P3, . . . ,Pk−1 for which messages m2,m3, . . . ,mk−1 exist, would output

⊥ by the property of m∗
1 and decision propagation. As Pk−1 can be an honest party, this would

violate the fairness property. Therefore, the pattern of the n messages whose destinations are

n parties, or in fact any permutation of the n parties must exist as a subsequence of E between

between m∗
1 and m∗

2 .

Thus, the number of messages between m∗
1 and m∗

2 (inclusive) of E is at least �. In the

meantime, in E , before m∗
1 , there are at least n −1 messages to meet the definition of m∗

1 and

after m∗
2 , there are at least n −2 messages to meet the definition of m∗

2 . We add together the

minimum numbers of messages before m∗
1 , after m∗

2 and between m∗
1 and m∗

2 , and then have

�+2n −3 as the final minimum number of messages during every optimistic execution.

4.3.2 Full proof of Theorem 9

We now give a detailed proof of Theorem 9. The full proof is organized as follows. First we give

the (weak) fairness property that we use repeatedly in the proof. To show this property, we

recall the formal definition of computational indistinguishability to elaborate the definition of

fairness in Section 4.2. Second, we present some preliminary assumptions, without the loss

of generality, on Stop for the simplicity of the presentation of of our proof. Finally, we show

the main part of our proof. The proof overview captures the main idea of our proof. Thus not

surprisingly, the main part of our proof starts with two necessary messages m∗
1 and m∗

2 , and

then proceeds to show that between these two messages, there must exist certain patterns

of messages. We next count all the necessary messages before m∗
1 , after m∗

2 and messages in

between respectively and complete our proof.

108

4.3. Lower Bound

(Weak) fairness

First, we give the (weak) fairness property that we use repeatedly in the proof.

Lemma 11 ((Weak) fairness). If a computation scheme α solves fair computation, then it

satisfies the following propety. For any e ∈N, any 1 ≤ e ≤ n −2, any e malicious parties and any

computationally bounded algorithm A that controls the e malicious parties, ∀x1, x2, . . . , xn, any

two honest parties Pi ,P j , i , j ,∈ {1,2, . . . ,n} output the same except with negligible probability.

We show that this property is implied by the fairness property in Definition 22. Before proving

the property, we recall formal definitions and terminologies used in Definition 22 such as

computational indistinguishability and a negligible function from their classical definitions in

[141, 142].

Definition 24 (Computational indistinguishability). If function g is a negligible function of

variable s, then ∀c ∈N, ∃C ∈N such that ∀s >C , g (s) < 1
sc .

Let A = {A(1s , a)} be a distribution ensemble, i.e., random variables indexed by 1s and a.

Let B(1s , a) = {B(1s , a)} be also a distribution ensemble. Then A and B are computationally

indistinguishable, if for any computationally bounded algorithm D(1s , a, w,D) that takes q

independently identically distributed random variables following the distribution D ,

|Pr [D(1s , a, w, A(1s , a)) = 1]−Pr [D(1s , a, w,B(1s , a)) = 1]| = neg l (s),∀a,∀w

where neg l (s) is a negligible function of s, q = q(s) is a polynomial of s and the probabilities

are taken over the random choices of D and q random variables of D .

In the context of Definition 22, s is the security parameter of the fair computation scheme.

Recall that in Definition 22, we say that the joint outputs O =OP1,P2,...,Pn ,A (x1, x2, . . . , xn) and

Ō =OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) are computationally indistinguishable. This means that for any

computationally bounded algorithm D(1s , a, w,D),

|Pr [D(1s , a, w,O) = 1]−Pr [D(1s , a, w,Ō) = 1]| = neg l (s),∀a,∀w

where a = x1||x2|| · · · ||xn , w may be arbitrary auxiliary information which is publicly known

and both O and Ō are indexed by 1s and a.

Proof of Lemma 11. Consider a computationally bounded algorithm A that does not control

Pi or P j . Let oi ,o j be the random variables that represent Pi and P j ’s outputs in the joint out-

put O respectively. Suppose that A controls e,1 ≤ e ≤ n −1 malicious parties Pd1 ,Pd2 , . . . ,Pde .

By Definition 22, there exists a computationally bounded algorithm S that controls P̄d1 , P̄d2 , . . . ,

P̄de such that O and Ō are computationally indistinguishable. Let ōi and ō j be the random

variables that represent P̄i and P̄ j ’s outputs in the joint output Ō respectively. Since S does

not control P̄i or P̄ j , ōi = ō j with probability 1.

109

Chapter 4. The Complexity of Optimistic Secure Transactions

Consider a computationally bounded algorithm D that tries to distinguish O and Ō as follows.

D takes one sample from the given distribution D. If in the sample, the i th element and the

j th element are the same, then D outputs 1; if not, D outputs 0. Then there exists a negligible

function neg l (s) such that

|Pr [D(1s , a, w,O) = 1]−Pr [D(1s , a, w,Ō) = 1]| = neg l (s),∀a

where a = x1||x2|| · · · ||xn and w is an empty string.

Since ōi = ō j with probability 1, Pr [D(1s , a, w,Ō) = 1] = 1. Let ρ be the probability such

that oi = o j . Then Pr [D(1s , a, w,O) = 1] = ρ. Thus ρ = 1−neg l (s). I.e., for any algorithm

A , any two honest parties Pi ,P j , i , j ,∈ {1,2, . . . ,n} output the same except with negligible

probability.

Then, we discuss some essential properties/convention of Stop, which we use later in the

proof.

Preliminaries

Here we make some assumption on Stop.

If P invokes Stop several times, Stop returns the same value as the first time.

P may communicate with T in Stop, but P does not communicate with T in Compute. This is

consistent to the optimism property.

When P invokes Stop, either P does not send messages to any other party including T and

simply terminates, or P communicates with T and then terminates. If P communicates with

T , P sends only one stop request. T does not ask any party (including P 9) for additional

messages when computing an output for P . This is due to the atomicity of the communication

with T and the termination property.

When P communicates with T and then terminates, T sends a response only to P . In the

asynchronous network, even if T sends messages to parties other than P , they might receive

the messages after they complete Compute or Stop in the worst case. Thus we consider that T

does not send messages to other parties.

We say that an optimistic execution E is initialized with x1, x2, . . . , xn , if n parties in E are

initialized with x1, x2, . . . , xn . When we discuss any optimistic execution E , E must have been

initialized with some n strings. Thus the term E initialized with (some) x1, x2, . . . , xn does not

lose generality.

9Since P communicates only with T , then in this case, P can simply send P ’s status and P ’s local input to T and
T does not need to ask P for additional messages.

110

4.3. Lower Bound

Sometimes we denote a party by O, P , Q, R, with an abuse of notations on O and R (as their

meaning is clear in the context).

Full proof

Recall the intuition (Section 4.3.1) that there are two necessary messages (of every optimistic

execution). Here we precisely define the two messages, m∗
1 and m∗

2 , and show their basic

properties. Lemma 12 and Corollary 1 define m∗
1 and prove a property of m∗

1 ; Lemma 13

defines m∗
2 and Corollary 3 and Lemma 14 show properties of m∗

2 . Corollary 2 confirms the

intuition of the order between two events: the arrival of m∗
1 and the arrival of m∗

2 .

Lemma 12. For any optimistic execution E, for any two parties P and Q, we say that P contacts

Q in E if one of the two properties below holds: (a) P sends m to Q and Q receives m; or (b) there

exists a party O such that P contacts O and subsequently O contacts Q.

Then for any optimistic execution E and any P ∈Ω, there exists a message m such that before m

arrives at its destination, ∃Q ∈Ω\{P } such that Q has not contacted P yet and after m arrives at

its destination, ∀Q ∈Ω\{P }, Q has contacted P.

Thus P is the destination of m. Let t be any status of P before P receives m in E. Then if P

invokes Stop with t and no other party has invoked Stop, then Stop returns ⊥ to P.

Proof. The lemma contains two parts. We first prove the existence of message m. By contra-

diction. Suppose that for some optimistic execution E initialized with x1, x2, . . . , xn and some

P ∈Ω, after E finishes, ∃Q ∈Ω\{P } has not contacted P yet. Then by the optimism property,

P performs a computationally bounded algorithm that computes f (x1, x2, . . . , xn) given only

Ω\{Q}’s inputs. A contradiction.

Second, we prove that if P invokes Stop with t and no other party has invoked Stop, then Stop

returns ⊥ to P . Since no other party has invoked Stop, Stop is only able to return to P a value

based on t , P ’s input and T ’s input. Let E be initialized with x1, x2, . . . , xn . Since t is P ’s status in

E before P receives m, ∃Q ∈Ω\{P } has not contacted P yet and thus t can be constructed given

only Ω\{Q}’s inputs. Since E is an optimistic execution, then by the completeness property, if

Stop returns a non-⊥ value, Stop returns z = f (x1, x2, . . . , xn). Suppose that Stop returns z to

P . Then there is a computationally bounded algorithm that evaluates f given only Ω\{Q}’s

inputs and T ’s inputs, which gives a contradiction.

Corollary 1. For any optimistic execution E, there exists message m∗
1 such that (a) before m∗

1

arrives at its destination, ∀P ∈Ω, ∃Q ∈Ω\{P } such that Q has not contacted P yet and (b) after

m∗
1 arrives at its destination, there exists the destination R of m∗

1 such that ∀Q ∈Ω\{R}, Q has

contacted R.

Proof. The correctness follows from Lemma 12.

111

Chapter 4. The Complexity of Optimistic Secure Transactions

Lemma 13. For any optimistic execution E initialized with x1, x2, . . . , xn, there exists message

m∗
2 such that (a) before m∗

2 arrives at its destination R, no P computes z = f (x1, x2, . . . , xn) from

P’s status and P’s input (according to the protocol underlying E) and (b) after m∗
2 arrives at R,

R computes z from R’s status and R’s input (according to the protocol underlying E).

In E, before R receives m∗
2 , ∀P ∈Ω\{R}, P has been contacted by Q, ∀Q ∈Ω\{P }.

Proof. The lemma contains two parts. The existence of message m∗
2 follows from the optimism

property.

We prove the second part by contradiction. Suppose that in E , ∃O ∈Ω\{R},Q ∈Ω\{O} such

that when R receives m∗
2 , O has not been contacted by Q. Consider an execution F that is the

same as E for the prefix that ends at the event of m∗
2 arriving at its destination (inclusive); in

F , after R receives m∗
2 , O invokes Stop, and Stop returns before any other party invokes Stop.

In F , O is honest. By Lemma 12, O outputs ⊥. However, an honest party R outputs z, which

violates the completeness property. A contradiction.

Corollary 2. For any optimistic execution E, let m∗
1 be defined as in Corollary 1 and let m∗

2 be

defined as in Lemma 13; then the event of m∗
1 arriving at its destination precedes the event of

m∗
2 arriving at its destination.

Proof. The correctness follows from Lemma 13, the class of function f considered and n ≥
2.

Corollary 3. For any optimistic execution E, let m∗
2 be defined as in Lemma 13 and let R be

the destination of m∗
2 ; then in E, before R receives m∗

2 , ∀P ∈Ω\{R}, P has received at least one

message.

Proof. The correctness follows from Lemma 13 and n ≥ 2.

We have now defined the two messages: m∗
1 and m∗

2 . Here they are defined for any certain

optimistic execution E . (If it is clear in the context, we omit the re-definition in the statements

of the following lemmas.) Lemma 12 above shows the output of an honest party if it stops

before the arrival of m∗
1 . Below Lemma 14 shows the output of an honest party if it stops after

the arrival of m∗
2 .

Lemma 14. For any optimistic execution E initialized with x1, x2, . . . , xn, let R be the destination

of m∗
2 ; for any P ∈Ω\{R}, let m be the last message received by P before message m∗

2 arrives R in

E. By Corollary 3, m exists.

Let t be the status of P in E right after P receives m. Then for any execution E (P) such that E (P)

is the same as E for P until P invokes Stop, and P invokes Stop with t after P receives m (and

before P’s next receipt of some message), Stop returns z = f (x1, x2, . . . , xn) to P.

112

4.3. Lower Bound

Proof. For any E(P), P ’s behavior is the same as an honest P to the parties in Ω\{P } and T ,

w.l.o.g., we say that in E(P), P is honest.

Let MP be the set of messages which P sends before m∗
2 arrives at R in E . Then the event of

P receiving m is the last event in E that might trigger P to send some message in MP . Due

to the arbitrary delay of communication channels and the arbitrary time instant of invoking

Stop, there exists such an execution E(P) that P has sent all the messages in MP before P ’s

next receipt of some message and before P invokes Stop with t . For any such execution E(P),

the parties in Ω\{P } may continue E without noticing P ’s invocation of Stop up to the point

when m∗
2 arrives at its destination R, and then an honest party R outputs z. Therefore, Stop

should return z to P , for otherwise, as all parties are honest here, the return of ⊥ violates the

completeness property.

Now due to the arbitrary time instant of invoking Stop, it is indistinguishable for T whether P ,

invoking Stop with t , has sent all the messages in MP or not. Therefore, for any E (P), Stop has

to return z to P .

Following our proof overview, after the properties of m∗
1 and m∗

2 , what an honest party should

output if it stops between m∗
1 and m∗

2 is shown in Lemma 15. In Lemma 15, we assume a

subsequence of messages in an optimistic execution; roughly speaking, we assume that the

honest party stops after this subsequence and investigate its output. We later combine Lemma

15 and the properties of m∗
1 and m∗

2 into Lemma 16, which relates the sequence of messages

ordered by when they are received in an optimistic execution to the permutation sequence.

Lemma 15. For any optimistic execution E and any k,2 ≤ k ≤ n, w.l.o.g., let m1,m2, . . . ,mk be

k messages in E such that (a) the destination of mi ,1 ≤ i ≤ k is Pi ; (b) mi+1,1 ≤ i ≤ k −1 is the

first message received by Pi+1 after Pi receives mi in E. Let ti ,1 ≤ i ≤ k be the status of Pi in E

right before Pi receives mi .

For 1 ≤ i ≤ k, define execution E(Pi) such that E(Pi) is the same as E for Pi until Pi invokes

Stop; in E(Pi), Pi invokes Stop with ti right before message mi arrives at Pi .

Assume that for any E(P1), if no other party invokes Stop before P1, then Stop returns ⊥ to P1.

Then

• for k = 1, for any E(Pk), when Pk invokes Stop, if no other party has invoked Stop, then

Stop returns ⊥ to Pk .

• for k = 2, for any E(Pk), when Pk invokes Stop, if Pk−1 has invoked Stop with tk−1, Stop

has returned ⊥ to Pk−1 and no other party has invoked Stop, then Stop returns ⊥ to Pk

except with negligible probability.

• for 3 ≤ k ≤ n, for any E(Pk), when Pk invokes Stop if P1,P2, . . . ,Pk−1 have invoked Stop

with t1, t2, . . . , tk−1 respectively and for 2 ≤ i ≤ k −1, Pi invokes Stop after Stop returns to

113

Chapter 4. The Complexity of Optimistic Secure Transactions

Pi−1, and Stop has returned ⊥ to P1, . . . ,Pk−1, and no other party has invoked Stop, then

Stop returns ⊥ to Pk except with negligible probability.

Proof. Let E be initialized with x1, x2, . . . , xn . We prove the lemma by induction. The base case,

for which k = 1, is trivial.

Suppose the statement is true for k −1,2 ≤ k ≤ n. Assume any E (Pk) as an execution such that

when Pk invokes Stop, P1, . . . ,Pk−1 have invoked Stop with t1, . . . , tk−1 respectively according to

the statement, Stop has returned P1, . . . ,Pk−1 ⊥ and no other party has invoked Stop, and Stop

returns r to Pk , where r is a random variable. (The randomness comes from that of P1, . . . ,Pk

and T .) Figure 4.2a illustrates E(Pk).

For any E(Pk), let E∗(Pk) be an execution that is the same as E(Pk) for P1,P2, . . . ,Pn until Pk

invokes Stop right before message mk−1 arrives at Pk−1. If P j , . . . ,Pk−1 for some j ,1 ≤ j ≤ k −1

do not invoke Stop before message mk−1 arrives at Pk−1 in E(Pk), let P j , . . . ,Pk−1 invoke Stop

right before message mk−1 arrives at Pk−1 in the same order with the same status as in E∗(Pk).

Also, let Pk invoke Stop after Stop has returned Pk−1 ⊥.

Due to the arbitrary delay of communication channels, in both E (Pk) and E∗(Pk), Pk ’s behavior

is the same as an honest Pk to Ω\Pk and T . Hereafter we say that Pk is honest. Again due to

the arbitrary delay of communication channels, to Pk and T , any E∗(Pk) is indistinguishable

from any E (Pk) at the point when Pk invokes Stop. Furthermore, since mk is the first message

received by Pk after Pk−1 receives mk−1 in E , the status of Pk in E∗(Pk) is also tk . Thus in

any E∗(Pk), Stop returns r to Pk (where the distribution of r remains the same). Figure 4.2b

illustrates E(Pk).

For any E(Pk−1) and for any E∗(Pk), we define an execution F such that (a) F is the same as

E(Pk−1) for Pk−1 until Pk−1 invokes Stop with tk−1 right before mk−1 arrives at Pk−1; (b) F

is the same as E∗(Pk) for Pk until Pk invokes Stop with tk right before mk−1 arrives at Pk−1;

(c) when Pk invokes Stop, P1, . . . ,Pk−1 have invoked Stop with t1, . . . , tk−1 respectively and

Pi ,2 ≤ i ≤ k −1 invokes Stop after Stop returns to Pi−1, Stop has returned ⊥ to P1, . . . ,Pk−2 and

no other party has invoked Stop. Figure 4.2c illustrates our construction F .

In F , Pk−1’s behavior is the same as an honest Pk−1 to Ω\{Pk−1} and T . Hereafter, we say that

Pk−1 is honest in F . According to n, there are two possibilities. First, if n = 2, then k = 2 and

all parties are honest. Since the statement is true for k −1, Stop returns ⊥ to Pk−1 in F . Then

by the completeness property, r =⊥ with probability 1. Second, if n > 2, since the statement

is true for k −1, then Stop returns ⊥ to Pk−1 except with negligible probability. When Stop

returns ⊥ to Pk−1, E∗(Pk) and F are indistinguishable to T and Pk due to the arbitrary delay of

communication channels. As a result, Stop returns r to Pk (where the distribution of r remains

the same).

Then for the second possibility, by the (weak) fairness property, r =⊥ except with negligible

probability. We can show this by contradiction. Suppose that r �= ⊥ with non-negligible

114

4.3. Lower Bound

probability. We build an algorithm A such that (1) A controls all parties except for Pk−1

and Pk , and (2) A plays the asynchronous network and the roles of the malicious parties so

that the resulting execution among P1,P2, . . . ,Pn ,T is F . A is a computationally bounded

algorithm such that two honest parties Pk−1 and Pk output differently with non-negligible

probability. This violates the (weak) fairness property. A contradiction.

As a result, if the statement is true for k −1,2 ≤ k ≤ n, the statement is true for k. Therefore,

the lemma is true for any k,2 ≤ k ≤ n.

(a) Execution E(Pk) (b) Execution E∗(Pk)

(c) Execution F

Figure 4.2 – The three key executions in the proof of Lemma 15. A dot line means that any
event might occur. A dashed line means that an event does not occur. A solid line means that
the same event as in E occurs.

Lemma 16. For any optimistic execution E, let R, a sequence of Ω, be the sequence of destina-

tions of the messages ordered by when they are received between the two events: the event of m∗
1

arriving at its destination and the event of m∗
2 arriving at its destination, inclusive.

Then R contains all the permutations of Ω as subsequences.

Proof. Let E be initialized with x1, x2, . . . , xn . We prove by contradiction. Suppose that, w.l.o.g.,

R does not include P1,P2, . . . ,Pn as a subsequence.

By Corollary 2, R starts at the destination of m∗
1 and ends at the destination of m∗

2 ; and

R includes P1 as a subsequence, which is also true for P2, . . . ,Pn . Then there exists some

k,2 ≤ k ≤ n − 1 such that R includes P1,P2, . . . ,Pk as a subsequence and does not include

P1,P2, . . . ,Pk+1 as a subsequence.

As a result, there exists a sequence m1,m2, . . . ,mk of k messages in E such that (a) the desti-

nation of mi ,1 ≤ i ≤ k is Pi ; (b) mi+1,1 ≤ i ≤ k −1 is the first message received by Pi+1 after

Pi receives mi and (c) m1 = m∗
1 , or m1 is the first message received by P1 after m∗

1 arrives at

115

Chapter 4. The Complexity of Optimistic Secure Transactions

its destination; and (d) the event of mk arriving at Pk precedes the event of m∗
2 arriving at its

destination. (The event of mk may also be the event of m∗
2 .)

Let t1 be the status of P1 right before P1 receives m1 in E . Define execution E(P1) such that

E(P1) is the same as E for P1 until P1 invokes Stop with t1 right before m1 arrives at P1. By

Lemma 12, for any E(P1), if no other party invokes Stop before P1, then Stop returns ⊥ to P1.

Let ti ,2 ≤ i ≤ k be the status of Pi right before Pi receives mi in E . Define execution E (Pk) such

that (a) E(Pk) is the same as E for Pk until Pk invokes Stop with tk right before message mk

arrives at Pk ; (b) P1,P2, . . . ,Pk−1 invoke Stop with t1, t2, . . . , tk−1 respectively; (c) for 2 ≤ i ≤ k, Pi

invokes Stop after Stop returns to Pi−1; (d) Stop returns ⊥ to P1,P2, . . . ,Pk−1; and (5) no other

party has invoked Stop. By Lemma 15, Stop returns ⊥ to Pk in E(Pk) except with negligible

probability. Figure 4.3a illustrates E(Pk).

Let m be the last message received by Pk+1 before message m∗
2 arrives at its destination in E

(inclusive). By Corollary 3, m exists if Pk+1 is not the destination of m∗
2 . Therefore, if Pk+1 is

not the destination of m∗
2 , then the event of m arriving at its destination precedes the event of

mk arriving at Pk in E (for otherwise, we have a subsequence P1,P2, . . . ,Pk+1, which gives a

contradiction). Moreover, Pk+1 can not be the destination of m∗
2 (for otherwise, we again have

a subsequence P1,P2, . . . ,Pk+1, which gives a contradiction).

Let tk+1 be the status of Pk+1 right after Pk+1 receives m in E . Consider an execution E (Pk ,Pk+1)

that is the same as E (Pk) for all the parties in Ω\{Pk+1} and is the same as E for Pk+1 until Pk+1

invokes Stop with tk+1, which is after Stop has returned to Pk . Since the event of m arriving

at its destination precedes the event of message mk arriving at Pk , in E(Pk ,Pk+1), we let Pk+1

invoke Stop with tk+1 also after Pk+1 receives m. Figure 4.3b illustrates our construction

E(Pk ,Pk+1).

In E(Pk ,Pk+1), Pk ’s behavior is the same as an honest Pk to Ω\{Pk } and T ; Pk+1’s behavior is

the same as an honest Pk+1 to Ω\{Pk+1} and T . Hereafter, we say that Pk and Pk+1 are honest

in E (Pk ,Pk+1). Moreover, until Stop returns to Pk , E (Pk ,Pk+1) and E (Pk) are indistinguishable

to Pk and T and therefore Stop returns ⊥ to Pk except with negligible probability also in

E(Pk ,Pk+1). However, by Lemma 14, Stop returns z = f (x1, x2, . . . , xn) to Pk+1.

Now we build an algorithm A such that (1) A controls all parties except for Pk−1 and Pk ,

and (2) A plays the asynchronous network and the roles of the malicious parties such that

every execution among P1,P2, . . . ,Pn satisfies E(Pk .Pk+1). A is a computationally bounded

algorithm such that two honest parties Pk and Pk+1 output differently with non-negligible

probability. This violates the (weak) fairness property. A contradiction.

Now that we have all the necessary properties of any optimistic execution, we are ready to

prove Theorem 9.

Proof of Theorem 9. Let R be defined as in Lemma 16. Recall that � is the length of the shortest

116

4.4. An Optimal Protocol

(a) Execution E(Pk) (b) Execution E(Pk ,Pk+1)

Figure 4.3 – Two key executions in the proof of Lemma 16. A dot line means that any event
might occur. A dashed line means that an event does not occur. A solid line means that the
same event as in E occurs.

sequence which contains, as subsequences, all permutations of n different symbols. Then

by Lemma 16, � lower bounds the length of R. By the definition of m∗
1 , there are at least

n −2 messages that precede m∗
1 in E ; otherwise, at least one party has not yet contacted the

destination of m∗
1 . By the definition of m∗

2 , there are at least n −1 messages that follow m∗
2 in

E ; otherwise, at least one party P cannot compute z from P ’s input and P ’s status.

Therefore, during any optimistic execution E , the number of messages sent is at least �+2n −
3.

Remark 1 (Honest behavior in an execution). Usually without a protocol specification, we

cannot define any honest behavior. In the proof of Theorem 9, the honest behavior is relative

to an optimistic execution.

4.4 An Optimal Protocol

To prove that �+2n−3 is a tight lower bound, we describe in this section an (�+2n−3)-message

optimistic fair computation scheme for the function that implements fair exchange of certain

items. This shows that the optimal message complexity can be achieved for some optimistic

fair computation scheme.

Our optimal protocol relies on a publicly verifiable transcript. I.e., each destination (i.e., each

party that receives a certain message) can verify whether the previous messages have arrived

at their destinations correctly. This is realized by adding digital signatures [139, 145]. In order

to help T recover the n inputs (if necessary) when some party invokes Stop, the n parties

exchange verifiable encryption [133] of the n inputs in the protocol that computes without the

third party. Section 4.1 recalls the basics of digital signatures and verifiable encryption, before

describing our optimal protocol.

117

Chapter 4. The Complexity of Optimistic Secure Transactions

4.4.1 Preliminaries

We denote a digital signature on message m by σ= Si gsk (m), and the verification algorithm of

a digital signature by V erpk (σ,m), where pk is a public key and sk is the corresponding secret

key. Sometimes we denote the signature of a party Pi , i ∈ {1,2, . . . ,n} simply by Si gi (m).

Recall that s is the security parameter of the fair computation scheme. Then roughly speaking,

a digital signature scheme is secure if any adversary (of running time polynomial in the security

parameter s) is able to forge a valid signature on some new message even after seeing many

valid signatures on other messages (chosen by the adversary and of a number polynomial in

s), only with negligible probability. (See [139, 145] for a formal definition of digital signature

schemes and their security.)

A verifiable encryption scheme is a recovery algorithm D and a two-party protocol between

prover P and verifier V [133]. Their common inputs are public key vk, public value x, condi-

tion κ10 and binary relation R. Prover P takes witness w as an extra input. Verifier V rejects

and outputs ⊥ if (x, w) ∉ R; otherwise V not only accepts but also obtains string α such that

D(sk,κ,α) = w and (x, w) ∈ R.

We denote an instance of verifiable encryption by V E(vk,κ, w, x,R). Roughly speaking, a

verifiable encryption scheme is secure, if no malicious verifier is able to learn w without sk

and no malicious prover is able to make V accept α̂ such that (D(sk,κ, α̂), ŵ) ∉ R. The formal

definition and definition of security for verifiable encryption schemes are recalled later when

we prove the correctness of the optimal protocol. A prominent example of verifiable encryption

is Asokan et al.’s non-interactive construction of verifiable encryption so that in the two-party

protocol between P and V , only P sends a message to V and this message is considered as the

string α if V accepts the message. Asokan et al.’s non-interactive construction of verifiable

encryption can be used to verifiably encrypt a list of digital signature schemes, which includes

Schnorr signatures, DSS signatures, Fiat-Shamir signatures, Ong-Schnorr signatures and GQ

signatures [48].

4.4.2 Protocol description

In this section, we now present an (�+2n −3)-message optimistic fair computation scheme

for function f (Equation 4.3) and thereby, prove that the lower bound of �+2n−3 messages is

tight (Theorem 10). In other words, we show the tightness in a constructive way.

Theorem 10. There exists an optimistic fair computation scheme for some function f where n

honest parties can evaluate f after they exchange exactly �+2n −3 messages without resorting

to T (i.e., in every optimistic execution).

10Condition κ usually represents the instance ID of the protocol, the public value and the binary relation to be
verified. In our fair computation scheme later, the resulting string of the two-party protocol between P and V can
only be decrypted by a trusted party. The trusted party decrypts the string only if the following condition holds:
the decrypted witness satisifies the binary relation with the public value.

118

4.4. An Optimal Protocol

Algorithm 11 Compute π

Require: a sequence i of length l that contains all the permutations of {1,2, . . . ,n}
Ensure: (l +2n −3)-message Compute π

1: Build sequence j :

j1, j2, . . . , jn−2, i , jn+l−1, jn+l , . . . , jl+2n−3

where (a) j1, j2, . . . , jn−2, i1 are n −1 different symbols; and (b) il , jn+l−1, jn+l , . . . , jl+2n−3

are n different symbols.
2: Set j0 = {1,2, . . . ,n}\{i1, j1, j2, . . . , jn−2}
3: In π, P jk−1 sends a message mk−1 to P jk upon receiving mk−2 for k = 1,2, . . . , l + 2n − 3

(except P j0 who sends m0 =V E j0 upon initialization) where

mk−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mk−2||V E jk−1 ||Si g jk−1 (mk−2||V E jk−1) 2 ≤ k ≤ n

mk−2||Si g jk−1 (mk−2) n +1 ≤ k ≤ end(jk−1)

mk−2||x jk−1 ||Si g jk−1 (mk−2||x jk−1) end(jk−1)+1 ≤ k ≤ l +n −2

(x1, x2, . . . , xn) l +n −1 ≤ k ≤ l +2n −3

(4.2)

and

V E jk−1 =V E(vkT ,κ, x jk−1 , a jk−1 ,R jk−1);

κ= (a1,R1), (a2,R2), . . . , (an ,Rn), which identifies the intended x1, x2, . . . , xn ;

end(jk−1) = max
K∈{1,2,...,l }

{K |iK = jk−1}+n −2

4: P1,P2, . . . ,Pn outputs z = (x1, x2, . . . , xn)

We build our protocol with Compute π (Algorithm 11) and Stop μ (Algorithm 12) given any

sequence that contains all the permutations of {1,2, . . . ,n}. Let l be the length of the sequence.

We then show in Theorem 11 that our protocol is an (l + 2n − 3)-message optimistic fair

computation scheme for the following function:

f (x1, x2, . . . , xn) =
⎧⎨
⎩

(x1, x2, . . . , xn) (ai , xi) ∈ Ri for i = 1,2, . . . ,n

⊥ otherwise
(4.3)

where R1,R2, . . . ,Rn are n relations that allow the non-interactive construction of verifiable

encryption and a1, a2, . . . , an are n public values.11 R1,R2, . . . ,Rn , a1, a2, . . . , an are included in

the public description of f .

The one-time setup of the protocol is not included in Algorithm 11 and Algorithm 12. Before

π and μ are carried out, a one-time setup (a) distributes necessary keys: T ’s public key vkT

11We also assume that for i ∈ {1,2, . . . ,n}, given ai , any computationally bounded algorithm outputs xi with
negligible probability, and given (ai , xi) such that (ai , xi) ∈ Ri , any computationally bounded algorithm outputs
yi , yi �= xi such that (ai , yi) ∈ Ri with negligible probability.

119

Chapter 4. The Complexity of Optimistic Secure Transactions

Algorithm 12 Stop μ

Require: sequence j of length l +2n −3 built for π
Ensure: Stop μ that accompanies π

1: For any k ∈ {0,1 . . . , l +2n−3}, P jk invokes μ when P jk wants to stop in π; otherwise, if π has
not started, the n parties output ⊥, or if π has finished, the n parties output (x1, x2, . . . , xn).

2: For k = 0, when invoking μ, if P jk has not sent mk , P jk quietly leaves π and μ and outputs
⊥.

3: For 1 ≤ k ≤ n−1, when invoking μ, if P jk has not received mk−1 correctly, P jk quietly leaves
π and μ and outputs ⊥.

4: For n ≤ k ≤ l+2n−3, let Ik = {i ndex| ji ndex = jk , i ndex ∈ {1,2, . . . ,k−1}}, let l astk = max Ik

when Ik �= � and let l astk = 0 when Ik =�, and define m−1 as an empty string. Then, for
n ≤ k ≤ l +2n−3, when invoking μ, if P jk has not received mk−1 correctly and has received
ml astk−1, then P jk sends to T message r eqk = ml astk . By sending r eqk , P jk claims that P jk

does not receive mk−1.
5: T verifies that r eqk is consistent with P jk ’s claim; and T calculates response

r esp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

“aborted” if r eqk and P jk ’s claim are not consistent

or P jk has sent a request before

z = (x1, x2, . . . , xn) else if variable z (which is initialized to ⊥) is not ⊥
“aborted” else if r eqk does not contain V E1,V E2, . . . ,V En

z ← (x1, x2, . . . , xn) else if k > mini ndex∈{pr og r ess+1,...,l+2n−3}{i ndex| ji ndex = jk }

and xi ← D(skT ,κ,V Ei) for i = 1,2, . . . ,n

z ← (x1, x2, . . . , xn) else if k ≥ l +n −1

and xi ← D(skT ,κ,V Ei) for i = 1,2, . . . ,n

“aborted” otherwise

T updates pr og r ess (which is initialized to 0) to k if k > pr og r ess, r eqk and P jk ’s claim
are consistent and P jk has not sent a request before. T then sends r esp to P jk .

6: P jk outputs ⊥ if r esp =“aborted”; and P jk outputs z if r esp = z.

and secret key skT , n parties’ public and secret keys correctly; (b) distributes the public

description of f correctly; and (c) executes the one-time setup of the verifiable encryption. (If

implemented, a trusted party Certificate Authority [146] can do this one-time setup.)

Some remarks on μ are in order: (a) as each part of the request message is publicly verifiable, T

is able to efficiently verify whether a party P ’s request and P ’s claim are consistent by following

Equation (4.2); and (b) P may invoke Stop at any point in time12, e.g., when a message received

by P in π is incorrect, or when P is impatient while waiting for some message; our protocol

allows every party to define their own strategy of invoking Stop, independent of the other n−1

parties.

We prove that this protocol (consisting of π and μ), given a shortest permutation sequence, is

12If messages are delivered instantly, P does not invoke Stop.

120

4.4. An Optimal Protocol

an (�+2n −3)-message optimistic fair computation scheme (of which the proof is in Section

4.4.3). This implies Theorem 10. Combined with Theorem 9, �+2n −3 is thus a tight lower-

bound on the number of messages for optimistic fair computation.

Theorem 11. Given a sequence i of length l that contains all the permutations of {1,2, . . . ,n},

the protocol consisting of π and μ is an (l +2n−3)-message optimistic fair computation scheme

for function f in Equation (4.3) in an asynchronous network with n −1 potentially malicious

parties.

In fact, function f implements fair exchange among n parties for items x1, x2, . . . , xn that

satisfy relations R1,R2, . . . ,Rn . Then Algorithm 11 and Algorithm 12 form a compiler that

can transform a shortest permutation sequence into an (�+2n −3)-message optimistic fair

exchange scheme. An application is a message-optimal optimistic fair exchange scheme of

digital signatures [48].13

4.4.3 Correctness proof of our protocol

We give here a detailed proof of correctness for our optimistic fair computation scheme for

function f , and thereby, prove Theorem 11. We note that this is a proof of a stand-alone execu-

tion. This is consistent with Definition 22, which considers a single execution of optimistic

fair computation in isolation among n +1 parties (including the trusted party T).

Before we present the proof, we recall the formal definition and security guarantee of verifiable

encryption from [133].

Definition 25 (Verifiable encryption [133]). Let (G ,E ,D) be the key generation, encryption

and decryption algorithms of a semantically secure public-key encryption scheme. Let (vk, sk)

be one key pair generated by G where vk is the public key and sk is the secret key. Let R be

a relation and let LR = {x|∃w such that (x, w) ∈ R}. Then a verifiable encryption scheme for a

relation R consists of a two-party protocol (P,V) and a recovery algorithm D . P and V take as

common inputs: vk, x, R (and some condition κ to open string α). P takes witness w such

that (x, w) ∈ R as an extra input. V rejects (i.e., outputs ⊥), or accepts and obtains string α. D

takes as inputs: sk, α (and κ). D outputs a witness ŵ (if the condition κ holds for ŵ).

A verifiable encryption scheme is secure if it satisfies the following properties:

• Completeness: If P and V are honest, then V accepts in the two-party protocol for all

(vk, sk) and for all x ∈ LR .

13In the application of fair exchange of digital signatures, Ri is some homomorphism θ depending on a given
digital signature scheme [48], and each of the first n messages of π is appended with an image of θ such that the
pre-image produces a correct signature. See [48] the non-interactive construction of verifiable encryption on
digital signatures on the details of how to choose θ and produce a correct signature by a pre-image of θ. We remark
here that the non-interactive construction of verifiable encryption on digital signatures in [48] uses part of the
correct signature as the pre-image of θ or as the input to the function f (rather than use the signing key of the give
digital signature scheme).

121

Chapter 4. The Complexity of Optimistic Secure Transactions

• Validity: For any computationally bounded algorithm P̂ , for all (vk, sk), if V accepts

and obtains string α in the two-party protocol with P̂ , then given α and sk, D outputs a

witness ŵ such that (x, ŵ) ∉ R with negligible probability.

• Computational zero-knowledge: For every algorithm V̂ , there exists an expected polyno-

mial-time simulator S given vk and x as well as R and κ, and with black-box access to V̂

such that for all x ∈ LR , the output of S is computationally indistinguishable from the

output of V̂ after the two-party protocol with an honest P (which is given vk, x, R, κ

and some witness w such that (x, w) ∈ R).

Furthermore, for the simplicity of the proof, we consider the particular verifiable encryption

scheme proposed in [133]. In particular, their construction of verifiable encryption includes

a three-move protocol (between the prover P and verifier V), where the second move is V

sending a random bit string. Hence, as [133] pointed out, this protocol can be made non-

interactive via Fiat-Shamir heuristic [147]: P uses a hash function to generate the random bit

string. Therefore the resulting non-interactive variant is one message sent by P considered as

the string α, and secure in the random oracle model [148]. For the non-interactive variant,

it is easy to see that the algorithm V in the scheme can be deterministic; i.e., given the one

message sent by P̂ , either V rejects (with probability 1) or V accepts (with probability 1); and

the recovery algorithm D in the scheme is also deterministic; i.e., given sk, κ and α, either D

rejects (with probability 1) or D outputs a witness (with probability 1).

Proof of Theorem 11. As shown in Algorithm 11, the number of messages is equal to the length

of sequence j which is l +2n −3. Thus the n parties exchange exactly l +2n −3 messages in π.

In what follows, we verify that our protocol satisfies Definition 22 and Definition 23.

Optimism. If P1,P2, . . . ,Pn are honest and none invokes Stop, then all parties follow π in which

all parties output z = f (x1, x2, . . . , xn) without interacting with T .

Non-triviality. As shown in Algorithm 11, if messages are delivered instantly, then P1,P2, . . . ,Pn

do not invoke Stop; therefore, we find one execution of π that P1,P2, . . . ,Pn are honest and

none invokes Stop.

Completeness. If P1,P2, . . . ,Pn are honest and none invokes Stop, then all parties follow π and

output z = f (x1, x2, . . . , xn). Next, we show by contradiction that if all parties are honest and

some invokes Stop, then either all parties output ⊥ or all parties output z = f (x1, x2, . . . , xn).

Suppose that an honest party P outputs ⊥ and an honest party Q outputs z. Since P outputs

⊥, then either (1) π has not started, or (2) P = P jk and 0 ≤ k ≤ n − 1, or (3) P = P jk and

122

4.4. An Optimal Protocol

n ≤ k ≤ l +2n −3 For cases (1) and (2), since by Equation (4.2),

mk =
⎧⎨
⎩

mk−1||V E jk ||Si g jk (mk−1||V E jk) 1 ≤ k ≤ n −1

V E j0 k = 0,

P has not sent V E jk . Again by Equation (4.2), mend(jk) = mend(jk)−1||x jk ||Si g jk (mend(jk)−1||x jk).

Since end(jk) > n −1, P has not sent x jk . Since all parties are honest, Q does not output z

from running π or μ in cases (1) and (2).

In case (3), since all parties are honest, by the completeness property of verifiable encryption,

and the definition of digital signatures, T accepts that r eqk and P = P jk ’s claim are consistent.

As P is honest, P has not sent a request before. In case (3), we consider two disjoint cases: (a)

∃i ∈ {1,2, . . . ,n}, V Ei is not in r eqk , and (b) ∀i ∈ {1,2, . . . ,n}, V Ei is in r eqk .

Consider case (3.a). By Equation (4.2), ∀i ndex ≥ n −1, mi ndex contains V E1,V E2, . . . ,V En .

Then 0 ≤ l astk ≤ n −2. Since j0, j1, . . . , jn−1 are different from each other, jk �= jn−1. Moreover,

k = mini ndex∈{n,n+1,...,l+2n−3}{i ndex| ji ndex = jk } ≤ end(jk). Therefore, P has not sent x jk , and

Q cannot output x jk following π.

Clearly, if Q does not interact with T , then Q outputs ⊥, and furthermore, if Q interacts with

T before P interacts with T , then Q also outputs ⊥. If Q interacts with T after P interacts

with T , then we assume that Q sends a request r eqq to T . Since Q is honest, T accepts that

r eqq is consistent with Q’s claim that Q has not received mq−1 (but has received ml astq−1). By

the definition of i , q ≤ end jq . (Otherwise, we do not have jk , jq as a subsequence of i). In

addition, since Q is honest, q ≤ mini ndex∈{k+1,k+2,...,l+2n−3}{i ndex| ji ndex = jq }. Therefore, T

sends “aborted” to Q.

In case (3.b), w.l.o.g., assume that P is the earliest process that sends to T a request and

receives “aborted”. Then variable pr og r ess is 0 at T when P sends r eqk . Then we have

k ≤ min
i ndex∈{1,2,...,l+2n−3}

{i ndex| ji ndex = jk }� f i r st (jk).

If jk �= j0, k ≤ n −1, which gives a contradiction. If jk = j0, then since k ≤ f i r st (jk), l astk = 0;

thus r eqk = ml astk =V E j0 , which also gives a contradiction for n ≥ 2.

Termination. As shown in Algorithm 11 and Algorithm 12, an honest party either follows π

and outputs, or wants to stop, follows μ and outputs. Since any message between an honest

party and T eventually reaches its destination, an honest party eventually outputs.

Fairness. We prove that for any e ∈N, 1 ≤ e ≤ n−1, any e malicious parties Pd1 ,Pd2 , . . . ,Pde , and

any computationally bounded algorithm A , there exists a computationally bounded algorithm

S such that the joint outputs OP1,P2,...,Pn ,A (x1, x2, . . . , xn) and OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) are

123

Chapter 4. The Complexity of Optimistic Secure Transactions

computationally indistinguishable for any x1, x2, . . . , xn .

We construct S that runs A as a black-box as follows.

1. S generates n + 1 key pairs (pk1, sk1), (pk2, sk2), . . . , (pkn , skn), (vkT , skT); and then

S invokes A and initializes A with inputs xd1 , xd2 , . . . , xde , n +1 parties’ public keys

pk1, pk2, . . . , pkn , pkT and malicious parties’ private keys skd1 , skd2 , . . . , skde .14

2. S plays the role of the n −k honest parties Ph1 ,Ph2 , . . . ,Phn−e and T , and executes our

protocol honestly with A except that:

• If by Algorithm 11, S has to send the (k −1)th message for 1 ≤ k ≤ n on behalf of

an honest party, then by the construction of Fiat-Shamir paradigm [147] and the

computational zero-knowledge property of verifiable encryption, S can simulate

the random oracle [148] and invoke the simulator (defined in the computational

zero-knowledge property) to compute message m̂k−1 (that is computationally

indistinguishable from the (k −1)th message except with negligible probability).

• If by Algorithm 11, S has to send the (k −1)th message for end(jk−1)+1 ≤ k ≤
l +n −2 on behalf of an honest party Psr c , then S sends x̂d1 , x̂d2 , . . . , x̂de on behalf

of P̄d1 , P̄d2 , . . . , P̄de respectively to U . S obtains a response from U , which contains

xh1 , xh2 , . . . , xhn−e . Then S uses xsr c to compute message m̂k−1. (How to obtain

x̂d1 , x̂d2 , . . . , x̂de is explained later.)

• If by Algorithm 12, S has to send a response including the Ph1 ,Ph2 , . . . ,Phn−e ’s

inputs on behalf of T , then S sends x̂d1 , x̂d2 , . . . , x̂de on behalf of P̄d1 , P̄d2 , . . . , P̄de

respectively to U . S obtains a response from U , which contains xh1 , xh2 , . . . , xhn−e .

S uses xh1 , xh2 , . . . , xhn−e to compute a response. (How to obtain x̂d1 , x̂d2 , . . . , x̂de is

explained later.)

• (S sends x̂d1 , x̂d2 , . . . , x̂de on behalf of P̄d1 , P̄d2 , . . . , P̄de respectively only once to

U .)15

3. In addition, S executes the following.

• If according to an honest party P ’s strategy of invoking Stop and μ, at some point

in the execution with A , P invokes Stop and outputs ⊥, then S sends ⊥ on behalf

of an arbitrary party in P̄d1 , P̄d2 , . . . , P̄de to U . If S ever sends ⊥, S sends ⊥ only

once.

• S saves x̂d1 , x̂d2 , . . . , x̂de by decrypting V Ed1 ,V Ed2 , . . . ,V Ede from the messages

exchanged with A (in π or μ).

14Both A and S are also initialized with public information, including the relations κ =
(a1,R1)||(a2,R2)|| · · · ||(an ,Rn), the algorithms of our protocol and in particular, the deterministic strategy
of when to invoke Stop for every honest party.

15We note that on behalf of T , when S has to verify the ciphertexts of verifiable encryption in a request, S only
verifies those ciphertexts V Ed1

,V Ed2
, . . . ,V Ede

(as S creates the others).

124

4.4. An Optimal Protocol

4. Finally, S outputs whatever A outputs.

We verify that S has saved x̂d1 , x̂d2 , . . . , x̂de before S has to send a message that contains at

least one honest party’s input. If by Algorithm 11, S has to send the (k −1)th message for

end(jk−1)+1 ≤ k ≤ l +n −2, then S has received and verified the (k −2)th message. By the

definition of sequence i , if jk−1 = jn−1, then end(jk−1) ≥ n +1; if jk−1 �= jn−1, then the first

symbol of i is not jk−1 and thus end(jk−1) ≥ n. In either case, k ≥ n +1, and therefore the

(k −2)th message includes V Ed1 ,V Ed2 , . . . ,V Ede . If by Algorithm 12, S has to send a response

on behalf of T , then S has verified the corresponding request, which also includes verified

V Ed1 ,V Ed2 , . . . ,V Ede . Thus, by the validity property of verifiable encryption, S successfully

decrypts x̂d1 , x̂d2 , . . . , x̂de such that {adi , x̂di } ∈ Rdi ,∀i ∈ {1,2, . . . ,e} except negligible probability.

We also verify that S does not send ⊥ and x̂d1 , x̂d2 , . . . , x̂de to U in the same execution, except

with negligible probability in a separate lemma (Lemma 17, which is given and proved later).

To show that the joint outputs OP1,P2,...,Pn ,A (x1, x2, . . . , xn) and OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) are

computationally indistinguishable, we first consider the transcript between S and A , and

the transcript among P1,P2, . . . ,Pn and A . By the computational zero-knowledge property

of verifiable encryption and the definition of S , any computationally bounded algorithm

A cannot distinguish the two transcripts except with negligible probability. Let F be any

execution between A and S in the game above when S is well-defined16. W.l.o.g., in F ,

honest parties played by S output according to Algorithm 11. Denote by OF the joint output

of P1,P2, . . . ,Pn and A in F . Then OF and OP1,P2,...,Pn ,A (x1, x2, . . . , xn) are computationally

indistinguishable.

We next consider the execution G among P̄1, P̄2, . . . , P̄n ,S and U when S runs F . We compare

the joint output OF with the joint output OG of P̄1, P̄2, . . . , P̄n ,S in G as follows. S ’s output is

the same as A ’s output. For any honest party Phi , i ∈ {1,2, . . . ,n −e}, we show that P̄hi outputs

the same. There are three possibilities for Phi : Phi either (1) invokes Stop and outputs ⊥, or

(2) invokes Stop and outputs a non-⊥ value, or (3) does not invoke Stop but outputs a non-⊥
value. In case (1), S sends ⊥ to U and thus in G , P̄hi also outputs ⊥. In case (2), (a) if Phi

interacts with T , then S uses U ’s response as T ’s response to Phi ; (b) if not, then to Phi , π

finishes and S must have obtained U ’s response to query inputs for honest parties including

Phi . Thus whether Phi interacts with T or not, P̄hi also outputs the same. Case (3) is the same

as case (2.b). Then OF and OG have the same distribution.

As a result, OG and OP1,P2,...,Pn ,A (x1, x2, . . . , xn) are computationally indistinguishable. Denote

by event the event that S is not well-defined. Since event occur with negligible probabil-

ity, OG and OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) are computationally indistinguishable. Then S is a

computationally bounded algorithm such that for any x1, x2, . . . , xn such that OP1,P2,...,Pn ,A (x1,

16With negligible probability, S is not well-defined. I.e., S cannot simulate the game above with A , for example,
when the simulator defined in the computational zero-knowledge property of verifiable encryption exceeds
polynomial time, when S decrypts x̂di

such that (adi
, x̂di

) ∉ Rdi
for some i ∈ {1,2, . . . ,e}, and when some honest

party outputs ⊥ but S still has to send a response that includes honest parties’ inputs.

125

Chapter 4. The Complexity of Optimistic Secure Transactions

x2, . . . , xn) and OP̄1,P̄2,...,P̄n ,S (x1, x2, . . . , xn) are computationally indistinguishable.

Next, we give the necessary lemma, which we use to verify that S as defined in the proof

of Theorem 11 does not send conflicting messages to U except with negligible probability.

However, instead of discussing S , we state the lemma in a more general but equivalent way.

Lemma 17 (Simulation of S). By Algorithm 11 and Algorithm 12, for any e ∈N,1 ≤ e ≤ n −1

and any e malicious parties Pd1 ,Pd2 , . . . ,Pde , for any computationally bounded algorithm A

that controls the e malicious parties, ∀x1, x2, . . . , xn, for any honest party P,

• either P outputs ⊥ with negligible probability,

• or P outputs ⊥ with non-negligible probability and given that an honest party P outputs

⊥, any other party Q outputs the honest parties’ inputs except with negligible probability.

By Lemma 17, for S , as defined in the proof of Theorem 11, when S has to send ⊥ to U with

non-negligible probability, the probability that S has to send non-⊥ inputs to U is negligible.

Lemma 17 also implies the inverse: if a party outputs the honest parties’ inputs with non-

negligible probability, then an honest party P outputs ⊥ with negligible probability. In other

words, when S has to send non-⊥ inputs to U with non-negligible probability, the probability

that S has to send ⊥ to U is negligible.

Proof of Lemma 17. We need only to prove the case where P outputs ⊥ with non-negligible

probability.

Since P is honest, then either (1) π has not started, or (2) P = P jk for 0 ≤ k ≤ n−1, or (3) P = P jk

for n ≤ k ≤ l +2n −3. (Some intermediary results are already deduced for the completeness

property in the proof of Theorem 11 and is thus not repeated here.)

In cases (1) and (2), P has not sent x jk or V E jk and thus by the property of (a jk ,R jk), any

computationally bounded algorithm outputs x with negligible probability. In case (3), since P

is honest, then by the determinism of the verification algorithm V of verifiable encryption, T

accepts that r eqk is consistent with P ’s claim, and in addition, P has not sent a request before.

When P interacts with T , at least one of the two holds: (a) ∃i ∈ {1,2, . . . ,n}, V Ei is not in r eqk ,

or (b) ∀i ∈ {1,2, . . . ,n}, V Ei is in r eqk .

In case (3.a), P has not sent x jk . If Q interacts with T before P interacts with T , then T

sends “aborted” to Q. If Q interacts with T after P interacts with T , then we assume that

Q sends a request r eqq . We show that the following two events occur at the same time

with negligible probability: event A is q > mini ndex∈{k+1,k+2,...,l+2n−3}{i ndex| ji ndex = jq }�
nextk (q) and event B is that Q passes the consistency verification of r eqq at T . We show this

by contradiction. Suppose that the two events occur at the same time with non-negligible

probability. Since q > nextk (q), then l astq ≥ nextk (q) > k; therefore, r eqq includes message

126

4.4. An Optimal Protocol

mk which includes P ’s signature on message mk−1. Then Q is a computationally algorithm

which forges P ’s signature on mk−1 (which P has not signed before) with non-negligible

probability, a contradiction to the unforgeability of digital signatures. Therefore, A and B

occur at the same time with negligible probability. Let Ā be the complement of A and let

B̄ be the complement of B . Then Ā ∪ B̄ occurs except with negligible probability. Since

nextk (q) ≤ end(jq) ≤ l +n − 2, T sends “aborted” to Q except with negligible probability.

If Q does not interact with T , then Q only obtains V E jk from π. Thus by the property of

(a jk ,R jk) and by the computational zero-knowledge property of verifiable encryption, any

computationally bounded algorithm outputs x with negligible probability.

In case (3.b), since k ≤ l +n −2, then by the definition of end , k ≤ end(jk). By Equation (4.2),

P has not sent x. Similar to case (3.b), If Q does not interact with T , then Q only obtains

V E jk from π. Clearly, if Q interacts with T but T sends “aborted” to Q except with negligible

probability, then by the property of (a jk ,R jk) and the computational zero-knowledge property

of verifiable encryption, the probability that Q outputs x jk is negligible.

We show by contradiction that Q interacts with T but T sends “aborted” to Q except with

negligible probability. Suppose that Q interacts with T but T sends a non-“aborted” value to Q

with non-negligible probability. Assume that Q sends a request r eqq to T . Let pg be the value

of the variable pr og r ess at T when Q starts to interact with T . Let event A be q > nextp g (q)

and let event B be the event that Q passes the consistency verification of r eqq at T . Then

similar to case (3.a), Ā ∪ B̄ occurs except with negligible probability. If B̄ occurs, then T

sends “aborted” to Q. Since Ā∪ B̄ occurs except with negligible probability, then Ā∩B occurs

with non-negligible probability. Clearly, if the recovery of the inputs from their ciphertexts

of verifiable encryption is not successful, then the condition κ is not satisfied and T sends

“aborted” to Q. However, by the validity property of verifiable encryption, given that B occurs,

the unsuccessful recovery occurs with negligible probability. In what follows, we consider the

case where Ā∩B occurs and the recovery for Q is successful.

W.l.o.g., Q is the first process that receives a non-“aborted” value from T . Then since Q is

the first process that receives a non-“aborted” value, by the validity property of verifiable

encryption, pg ≥ l +n −2 except with negligible probability.

When Q invokes μ with request r eqq , the variable z at T is ⊥. By Algorithm 12, thus T updates

pr og r ess in a specific way: pr og r ess is first updated with request r eqI1 where I1 is the first

index of jI1 in the suffix j [n −1 :] of sequence j , and then each update is with such a request

r eqI2 that I2 is the first index of jI2 in the suffix j [pr og r ess +1 :]. Let α be the sequence of

parties who invoke μ and trigger T to update pr og r ess before P jq invokes μ for r eqq . Let σ

be the sequence of the subscripts of those parties.

Since pg ≥ l+n−2 except with negligible probability, σ is a subsequence of i = j [n−1 : l+n−2]

and, moreover, must be the prefix of some permutation of {1,2, . . . ,n} in i except with negligible

probability.

127

Chapter 4. The Complexity of Optimistic Secure Transactions

Clearly, if T returns a non-“aborted” to Q, then q ≥ l +n −1. Since Ā occurs, nextp g (q) ≥
l +n −1. When pg ≥ l +n −2, since σ ends at jpg (inclusive) and there is no jq between jpg

and jnext−1, jq must occur in σ. (Otherwise, as next ≥ l +n −1, there is no hope for σ to

include jq in the permutation before jl+n−2 (inclusive), contradictory to the definition of i .)

In other words, P jq must have invoked μ before, except with non-negligible probability. Then

T returns “aborted” to Q for r eqq except with negligible probability. A contradiction.

Thus, we conclude that when P outputs ⊥ with non-negligible probability, then given that an

honest party P outputs ⊥, any other party Q outputs the honest parties’ inputs except with

negligible probability.

4.5 Related Work

4.5.1 Optimistic fair computation

Cachin and Camenisch [6] formalized optimistic fair computation for two parties and a third

party T (that can also be malicious). Asokan et al. [48] formalized optimistic fair exchange of

digital signatures between two parties and T (where T is honest). In this chapter, we assume

T is honest. We briefly compare here the two definitions above. Cachin and Camenisch [6]

formalized fair computation using the simulatability paradigm [5], while Asokan et al. [48]

formalized fair exchange through games [139]. As the former can provide stronger security

guarantee, we follow the definition of fair computation in [6]. Both formalizations consider the

termination property in an asynchronous setting. We model this property using Stop, which is

equivalent to the signal of termination in [48]. Asokan et al. [48] also defined the completeness

property regarding the case where all parties are honest, while there is an ambiguity regarding

this case in [6]. We adapt the definition of the completeness property from [48]. The optimism

property was defined differently in [6] and [48]. In [6], the asynchronous network must deliver

messages instantly, whereas in [48], the asynchronous network is allowed to deliver messages

arbitrarily (while the rest of the statement is the same). We adopt the optimism property

from [48], as it provides a stronger guarantee. Following Asokan et al.’s work [48], Küpçü and

Lysyanskaya [149] defined optimism similarly in games.

In addition, we include the non-triviality property to rule out trivial protocols that send no

message and abort all the time. (Our proof of the lower bound is based on the existence

of at least one optimistic execution guaranteed by non-triviality and optimism, but our fair

computation scheme, on the other hand, allows arbitrarily many optimistic executions.)

4.5.2 Optimistic fair exchange

For two parties, Asokan et al. [48] proposed a 4-message optimistic fair exchange scheme that

ensures termination. Since �= 3 for two parties, our Theorem 9 shows that the 4-message fair

exchange scheme is optimal for two parties. This also implies that a 3-message fair exchange

128

4.5. Related Work

scheme does not meet all of the required properties. For example, the optimistic fair exchange

scheme proposed in [128] was criticized by Asokan et al. [48] as not ensuring termination.

Another example is Ateniese’s 3-message optimistic fair exchange scheme [150], which also

does not ensure termination as noted by the author himself [150]. A recent follow-up work

[151] has the same drawback.

To the best of our knowledge, up to our work (presented in this chapter), no message-optimal

optimistic fair exchange or optimistic fair computation scheme among n parties for an arbi-

trary n (with n −1 potentially malicious parties) has been proposed.

4.5.3 Optimal optimistic schemes

We explain here the relation between the optimal efficiency of optimistic schemes of related

problems and our optimal message efficiency. Pfitzmann, Schunter, and Waidner (PSW) [54]

determined the optimal efficiency of fair two-party contract signing, Schunter [55] determined

the optimal efficiency of fair two-party certified email, whereas Dashti [56] determined the

optimal efficiency of two-party fair exchange in the crash-recovery model with no amnesia

[152]. None of these results implies our Theorem 9, even only for n = 2. For PSW’s result as well

as Schunter’s result, this is because there is no reduction of the problem of fair computation to

the problem of fair contract signing17 or fair certified email; for Dashti’s result, this is because

our model can be considered as the Byzantine failure model [152], and is thus stronger than

the model considered by Dashti. Our proof of the lower bound, together with our message-

optimal scheme, can be applied to prove that �+2n −3 is the optimal message efficiency of

fair n-party contract signing in the model of PSW. The special case where n = 2 can be used to

prove PSW’s result, while PSW’s proof was, unfortunately, flawed.

Draper-Gil et al. [153] determined the minimal message complexity of contract signing

schemes with weak fairness on four topologies. Weak fairness implies that the honest parties

might have different outputs as long as they can prove their honest behavior. On the contrary,

our optimal message efficiency �+2n −3 applies to any topology, and employs a stronger

fairness definition than [153]. Thus their result does not imply our Theorem 9 and vice versa.

4.5.4 The shortest permutation sequence

Mauw, Radomirović and Dashti (MRD) [51] proved that the optimal number of messages of

totally-ordered fair contract signing schemes18 falls between �+n −1 and �+2n −3. Later,

Mauw and Radomirović (MR) [53] generalized the result of MRD to DAG-ordered fair contract

signing schemes19. Both [51] and [53] considered fair contract signing as fair exchange of

17The main difference is that contract signing outputs a proof which binds a contract agreed in advance while
computation usually does not require such binding.

18In a totally-ordered contract signing scheme, signers execute totally-ordered communication steps; i.e., at any
point in time, only one signer has sufficient messages to calculate and send the next message.

19In a DAG-ordered contract signing scheme, communication steps can be ordered in a directed acyclic graph.

129

Chapter 4. The Complexity of Optimistic Secure Transactions

digital signatures. They use a model different from PSW, and fall within the coverage of our

Theorem 9. Neither MRD’s result nor MR’s result implies our Theorem 9. Neither allows

arbitrarily interleaved messages as our Theorem 9; instead, they assume that communication

steps are either totally ordered or ordered following a directed acyclic graph (DAG). In addition,

both results [51, 53] propose a range of the optimal efficiency for fair exchange, instead of a

concrete lower bound for fair computation in general (as does our Theorem 9).

It is important to note that our Theorem 9 is not a generalization of MRD’s result nor of MR’s

result. What MRD or MR count are the messages sent from some signer. This makes the proof

difficult to extend: after a message m leaves its source s, due to the asynchronous network,

m does not help s’s knowledge about other parties’ possible states. Thus m should not help

s reach an agreement if s wants to stop after sending m, unless the messages after m are

defined and ordered in advance. On the contrary, what we count throughout our proof are the

messages received (or not) at a destination d , which affects d ’s stop event. This is the key in

our case for not requiring any ordering.

Another crucial concept used by MRD is the idea of an idealized protocol. An idealized

protocol is informally defined as a totally-ordered fair exchange protocol of which the number

of messages in an optimistic execution is optimal [51]. (Here a protocol is equivalent as

a Compute protocol in our Definition 20. The communication with a third party T is not

considered as part of the protocol.) At the end phase of the idealized protocol, each of

the n signers is supposed to send exactly one message [51]. It is not clear yet whether the

assumption can be justified or not: the main theorem in [51] relates the end of an idealized

protocol with part of the shortest permutation sequence; however, (the form of the end of)

the shortest permutation sequence is still open for a large n [129]. This also leads to a non-

optimal fair exchange protocol in [51] and a non-optimal protocol compiler in [52] which

generates a protocol specification of an optimistic fair contract signing scheme given a shortest

permutation sequence.20 Compared with MRD’s idealized protocol, our proof of Theorem

9 shows that, at the end of an optimal protocol, each of the n parties may receive exactly

one message, and moreover, the end of an optimal protocol is not related to the shortest

permutation sequence. We believe that this has further implications on the design of correct

and efficient fair computation protocols.

20Although [52] proved that the resulting protocol needs at least �+2n −3 messages in an optimistic execution,
the number of messages exchanged during every optimistic execution is actually strictly larger than �+2n −3 for
n ≥ 3, and is thus not optimal.

130

5 Concluding Remarks

In this dissertation, we study the complexity and propose optimal protocols of decentralized

solutions for reliable and secure distributed transactions. Here a decentralized solution refers

to the one which does not use a distinguished coordinator or use the coordinator as little as

possible. To this end, we perform two analyses on atomicity and causal consistency in reliable

distributed transactions and one study on optimistic fair computation in secure distributed

transactions. We now summarize our complexity results and outline a few open issues and

research directions for future work.

5.1 Summary

5.1.1 Distributed transaction commit

We present the first systematic study of the complexity of atomic commit. We study the best-

case complexity, i.e., the time and message complexity of any nice execution of a commit

protocol. To have a better understanding of the tradeoff between atomicity and efficiency, we

have a more fine-grained view of atomicity, compared with previous work [16, 1, 25, 26]. We

consider two types of failures, crash and network failures and we study the complexity of a

commit protocol by its robustness, i.e., which property (of the classical non-blocking atomic

commit) is required in which executions (including less likely executions with failures). Our

systematic study exhaustively goes through 27 variants of of non-blocking atomic commit

(NBAC) defined by robustness.

Interestingly, our complexity results show that

• The time complexity and the message complexity reach the maximum (among the 27

variants) respectively when NBAC is solved in the face of crash failures and agreement is

satisfied despite both types of failures;

• The message complexity increases (from zero to non-zero, and from n −1+ f messages

to 2n −2 messages for at most f crashes among n processes) when validity needs to be

131

Chapter 5. Concluding Remarks

additionally satisfied;

These complexity results also highlight a tradeoff between time and message complexity in 18

out of the 27 variants. By the complexity results, we answer the open question on the time

and message complexity of synchronous NBAC (which solves NBAC only in the face of crash

failures) since Dwork and Skeen’s lower bound (on the number of messages) [1].

We propose the INBAC protocol which solves indulgent atomic commit, the most robust

form among atomic commit problems we study. INBAC performs almost as efficiently as

the widely-used two-phase commit (2PC) [22]: in some special case (for example, where

among n processes, at most one can crash), INBAC induces two communication rounds, the

same as 2PC, and needs additionally two messages, compared with 2PC. Previous protocols,

PaxosCommit, and faster PaxosCommit [73], solve indulgent atomic commit as well. Our

INBAC protocol is the most efficient among these protocols in that

• INBAC is delay-optimal: same as faster PaxosCommit and better than PaxosCommit;

• INBAC is message-optimal among the delay-optimal protocols.

The comparison between PaxosCommit and our INBAC protocol also illustrates a tradeoff

between time and message complexity.

5.1.2 Causal transactions

We present the formal complexity analysis of causal transactions. We study the complexity of

read-only transactions, considered the most frequent in practice, and obtain two impossibility

results regarding fast read-only transactions:

• In an asynchronous system, if a causally consistent transactional storage system sup-

ports every transaction to read and write multiple objects, then even read-only transac-

tions alone cannot be fast.

• In an asynchronous system where only servers have access to a global accurate clock

(while client requests are oblivious to their local clocks), if a causally consistent transac-

tional storage system supports fast read-only transactions and single-write transactions

only, then read-only transactions cannot be invisible, where (in)visibility refers to the

complexity that a read-only transaction incurs some write to servers (or not).

Our impossibilities apply to causal consistency and hence to stronger consistency criteria.

They hold without assuming any message or node failures and hence hold for failure-prone

systems. Our impossibility results hold only assuming that no server stores all objects, inde-

pendent from any particular partial replication scheme.

132

5.1. Summary

To complement our second impossibility result, we propose a protocol that implements

visible fast read-only transactions. Compared with COPS-SNOW, the previous protocol that

provides fast read-only transactions [44], our protocol also provides fast single-object write

transactions while COPS-SNOW does not. We show that under different system assumptions,

the impossibility results can break, by proposing two protocols. The first protocol supports

generic transactions (that breaks the first impossibility) in a synchronous system where there

is a known upper bound on the time spent on the communication and local computation and

a global accurate clock is accessible to all servers and clients. The second protocol provides

invisible read-only transactions (that breaks the second impossibility) in an asynchronous

system where a global accurate clock is accessible to all servers and clients. Both protocols are

based on timestamps thanks to the accurate clock.

5.1.3 Optimistic secure transactions

We present, for the first time, a tight lower bound on the message complexity of optimistic

secure transactions. We study optimistic secure transaction in the model of optimistic fair

computation. Here fairness ensures a property similar to atomicity: either all participants may

output the result of the transaction or none can, and also preserves privacy: no participant may

know information of others’ private inputs beyond the result of the transaction. We consider

the worst adversarial setting: a maximum number (n −1 out of n) of malicious participants

(or Byzantine failures), and study the message complexity of any optimistic execution.

Interestingly, our main result shows that in every optimistic execution, if we order all messages

according to when they are received and construct a sequence of the destinations of all

messages based on this order, then the sequence must contain all permutations of the n

participants. This relates the message complexity in our study to the permutation sequence in

combinatorics. Although the length � of the shortest permutation sequence in combinatorics

is still open for large n, by relating our problem to the shortest permutation sequence, we

prove that �+2n−3 lower bounds the number of messages exchanged; we propose a matching

scheme of fair exchange of exact �+2n −3 messages so that the lower bound is tight. This fair

exchange scheme can be applied to exchange digital signature (such as Schnorr signatures

[134], DSS signatures [135], Fiat-Shamir signatures [136], Ong-Schnorr signatures [137], GQ

signatures [138]), and hence can implement message-optimal electronic contract signing.

Clearly, an application of the scheme is to trade items in a secure and transactional way.

Compared with previous proposals of secure transactions that involve trusted third parties in

every execution, the time complexity of the scheme is �+2n−3, which is θ(n) according to the

current progress in combinatorics [58, 59, 60, 130], while previous proposals finish in constant

time complexity. This highlights a tradeoff between the introduction of trust assumptions to a

protocol and the complexity of the protocol.

133

Chapter 5. Concluding Remarks

5.2 Future Directions

5.2.1 Reliable transactions

Atomicity

The atomic commit protocol lies at the heart of distributed transaction processing systems

[17, 64, 18, 19, 20, 21] where 2PC is widely used. Although the 2PC protocol is efficient, 2PC

does not guarantee termination when processes can crash and 2PC can be blocked by slow

messages caused by network failures where message delays can be unbounded (until some

unknown stabilization time).

According to our systematic study, the 2PC protocol actually solves the following atomic com-

mit problem: NBAC is solved in any failure-free execution, while only validity and agreement

are satisfied despite crash and network failures. Then our INBAC protocol can be considered

as an alternative to 2PC, as it solves indulgent atomic commit, which ensures termination

despite crash and network failures (in addition to what 2PC solves), and performs almost as

efficiently as 2PC. Hence it is intriguing to implement INBAC in those existing transaction

processing systems which employ 2PC and to evaluate the performance in the failure-free

settings and failure-prone settings. As we support the optimal nice execution by complex

failure-prone executions, the challenge of the implementation and further optimization of the

protocol would lie in the cases that abort transactions.

Our complexity results highlight a tradeoff between time and message complexity among 18

out of 27 variants of the atomic commit problem which we study. Thus it is also intriguing to

have a systematic study of the tradeoff. Among these 18 variants, the tradeoff between time

and message complexity for indulgent atomic commit is particularly interesting. In fact, some

tradeoff result exists, following our work: Goren and Moses [154] characterized the tradeoff

between time and message complexity for the atomic commit problem in the crash-failrue

system. In addition, they measured time complexity by rounds and distinguished between

a round where some process decides and a round where some process halts (i.e., quits the

protocol). Distinguishing the deciding round and halting round may also contribute to future

research in the investigation of the complexity of the atomic commit problem.

We also propose the 0NBAC protocol which solves the following atomic commit problem:

NBAC is solved in any failure-free execution, while only agreement and termination are

satisfied despite crash and network failures. The 0NBAC protocol with zero message and one

message delay in any nice execution, is both message-optimal and delay-optimal. Thus it

might be of practical interest to work on an application of 0NBAC and evaluate its performance

in the failure-free settings as well as failure-prone settings.

134

5.2. Future Directions

Transaction consistency

Causal transactions are practically appealing, since (1) replication does not need to be per-

formed while a transaction is executed, as in the model of eventual consistency, and (2) causal

consistency allows more meaningful applications than eventual consistency. Hence the pro-

tocols which we propose to break the impossibilities of fast read-only transactions are of

practical interest as they can potentially perform as efficiently as transactions in the model of

eventual consistency. Possible future work includes the implementation of these protocols

(which support fast read-only transactions), evaluate their performance and compare them

with these protocols which ensure only eventual consistency to have a better understanding

of the cost of fast read-only transactions. We are particularly interested in the protocol of

visible fast read-only transactions which we propose. In our protocol, the inherent updates on

servers (i.e., visibility) are performed outside any transaction. This might reduce the impact

on the overall performance and enable it to outperform COPS-SNOW.

As fast read-only transactions are of practical interest, a more fine-grained study on the

assumptions where the impossibilities hold or not could benefit future design of causally

consistent storage systems. For example, in practice, clients and servers are given access

to their local clocks between which there can be arbitrarily large drift. Assuming that client

requests are non-oblivious to the local clocks, it is not yet clear whether the two impossibilities

we obtain still hold or not especially in the partially replicated setting in general.

A formal study on the inherent cost of read-only transactions in general would also be inter-

esting. To this end, a definition of visibility in general is necessary. The challenge to define

the visibility for transactions of more than one round lies in the fact that a server may batch

messages to increase throughput yet it is hard to isolate formally the message which brings

visibility without imposing a particular framework on the underlying protocols of distributed

storage.

5.2.2 Secure transactions

In electronic commerce, secure transactions preserve the privacy of data so that goods and

services are not taken advantage of due to an unsuccessful transaction. Hence considering

the current throughput of electronic transactions, it is worthwhile to investigate the time

complexity of optimistic secure transactions. Our result which relates the pattern of messages

in every optimistic execution to the permutation sequence may lay a basis on the investigation.

As the question of the shortest permutation sequence has been answered for small n [58],

possible future work includes the implementation of our protocol for a small number of

participants, evaluate the performance and compare it with the protocols which rely on

trusted third parties in every execution. For performance evaluation, one might be particularly

interested in the setting of parallel executions of the same protocol: by these protocols to

compare with, the parallel executions all access the same trusted parties, which may be a

135

Chapter 5. Concluding Remarks

performance bottleneck, while by our protocol, the parallel executions access different parties.

Another future direction is to perform an exhaustive study on the complexity of optimistic

secure transactions on different types of failures and different numbers of possible failures

like in our study of distributed transaction commit. In practice, among a large number of

participants, an honest party may distrust a few rather than all of them. Then this future study

can further highlight the tradeoff between the trust or confidence in the failure-prone setting,

and the complexity of secure transactions.

136

Bibliography

[1] C. Dwork and D. Skeen, “The inherent cost of nonblocking commitment,” in PODC ’83,

pp. 1–11.

[2] J. Gray, “The transaction concept: Virtues and limitations (invited paper),” in VLDB ’81,

pp. 144–154.

[3] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Minimizing commit latency of trans-

actions in geo-replicated data stores,” in SIGMOD ’15, pp. 1279–1294.

[4] T. A. S. Foundation, “Apache cassandra,” Online, 2016, http://cassandra.apache.org/.

[5] R. Canetti, “Security and composition of multiparty cryptographic protocols,” Journal

of Cryptology, vol. 13, no. 1, pp. 143–202, 2000.

[6] C. Cachin and J. Camenisch, “Optimistic fair secure computation,” in CRYPTO ’00, pp.

93–111.

[7] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California fault lines: Under-

standing the causes and impact of network failures,” SIGCOMM Comput. Commun. Rev.,

vol. 40, no. 4, pp. 315–326, Aug. 2010.

[8] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers:

Measurement, analysis, and implications,” SIGCOMM Comput. Commun. Rev., vol. 41,

no. 4, pp. 350–361, Aug. 2011.

[9] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an mttf of

1,000,000 hours mean to you?” in FAST ’07.

[10] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing hardware reliabil-

ity,” in SoCC ’10, pp. 193–204.

[11] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C. Grimes, and

S. Quinlan, “Availability in globally distributed storage systems,” in The 9th USENIX

Symposium on Operating Systems Design and Implementation, 2010.

[12] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, 1st ed. Morgan

Kaufmann Publishers Inc., 1992.

137

Bibliography

[13] ANSI, “Database language sql, ansi x3.135-1992 edition.” 1992.

[14] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A critique of ansi

sql isolation levels,” SIGMOD Rec., vol. 24, no. 2, pp. 1–10, May 1995.

[15] M. T. Özsu and P. Valduriez, Introduction to Transaction Management. Springer New

York, 2011, pp. 335–359.

[16] D. Skeen, “Nonblocking commit protocols,” in SIGMOD ’81, pp. 133–142.

[17] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, “Sinfonia: A new

paradigm for building scalable distributed systems,” SIGOPS Oper. Syst. Rev., vol. 41,

no. 6, pp. 159–174, 2007.

[18] D. Peng and F. Dabek, “Large-scale incremental processing using distributed transac-

tions and notifications,” in OSDI ’10, pp. 1–15.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,

C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,

D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford, “Spanner: Google’s globally distributed database,” ACM

Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, 2013.

[20] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-si: Snapshot isolation for partitioned data

stores using loosely synchronized clocks,” in SRDS ’13, pp. 173–184.

[21] M. K. Aguilera, J. B. Leners, and M. Walfish, “Yesquel: Scalable sql storage for web

applications,” in SOSP ’15, pp. 245–262.

[22] J. Gray, “Notes on data base operating systems,” in Operating Systems, An Advanced

Course, 1978, pp. 393–481.

[23] D. Skeen and M. Stonebraker, “A formal model of crash recovery in a distributed system,”

IEEE Transactions on Software Engineering, vol. SE-9, no. 3, pp. 219–228, 1983.

[24] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, no. 2, pp.

133–169, 1998.

[25] V. Hadzilacos, “A knowledge-theoretic analysis of atomic commitment protocols,” in

PODS ’87, pp. 129–134.

[26] O. Wolfson and A. Segall, “The communication complexity of atomic commitment and

of gossiping,” SIAM J. Comput., vol. 20, no. 3, pp. 423–450, 1991.

[27] “Snapshot isolation in sql server,” Online, 2017, https://docs.microsoft.com/en-us/

dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server.

[28] “Chapter 11. berkeley db transactional data store applications,” Online, 2010, https:

//docs.oracle.com/cd/E17275_01/html/programmer_reference/transapp_read.html.

138

Bibliography

[29] “Ssi,” Online, 2018, https://wiki.postgresql.org/wiki/SSI.

[30] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for snapshot databases,”

ACM Trans. Database Syst., vol. 34, no. 4, pp. 20:1–20:42, Dec. 2009.

[31] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage for geo-replicated

systems,” in SOSP ’11, 2011, pp. 385–400.

[32] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and a solution,”

SIGMOD Rec., vol. 25, no. 2, pp. 173–182, Jun. 1996.

[33] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Highly

available transactions: Virtues and limitations,” Proc. VLDB Endow., vol. 7, no. 3, pp.

181–192, Nov. 2013.

[34] Amazon, “Amazon dynamodb - nosql cloud database service,” Online, 2018, https:

//aws.amazon.com/dynamodb/.

[35] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t settle for eventual:

Scalable causal consistency for wide-area storage with cops,” in SOSP ’11, pp. 401–416.

[36] ——, “Stronger semantics for low-latency geo-replicated storage,” in 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 13), 2013, pp.

313–328.

[37] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable causal consistency using

dependency matrices and physical clocks,” in Proceedings of the 4th Annual Symposium

on Cloud Computing, ser. SOCC ’13, pp. 11:1–11:14.

[38] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap and scalable causal

consistency with physical clocks,” in Proceedings of the ACM Symposium on Cloud

Computing, ser. SOCC ’14, pp. 4:1–4:13.

[39] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro, “Write fast,

read in the past: Causal consistency for client-side applications,” in Proceedings of the

16th Annual Middleware Conference, ser. Middleware ’15, 2015, pp. 75–87.

[40] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça, and

M. Shapiro, “Cure: Strong semantics meets high availability and low latency,” in 2016

IEEE 36th International Conference on Distributed Computing Systems (ICDCS), 2016,

pp. 405–414.

[41] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd, “I can’t believe it’s

not causal! scalable causal consistency with no slowdown cascades,” in 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 17), 2017, pp.

453–468.

139

Bibliography

[42] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal memory: definitions,

implementation, and programming,” Distributed Computing, vol. 9, no. 1, pp. 37–49,

1995.

[43] M. Raynal, G. Thia-Kime, and M. Ahamad, “From serializable to causal transactions for

collaborative applications,” in EUROMICRO ’97, 1997, pp. 314–321.

[44] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd, “The SNOW theorem and latency-

optimal read-only transactions,” in 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), 2016, pp. 135–150.

[45] M. VISA, “Secure electronic transaction specification, books 1-3,” June 1996.

[46] S. Micali and P. Rogaway, “Secure computation,” in CRYPTO 1991, J. Feigenbaum, Ed.,

pp. 392–404.

[47] D. H. Steves, C. Edmondson-Yurkanan, and M. Gouda, “Properties of secure transaction

protocols,” Computer Networks and ISDN Systems, vol. 29, no. 15, pp. 1809 – 1821, 1997.

[48] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital signatures,”

Selected Areas in Communications, IEEE Journal on, vol. 18, no. 4, pp. 593–610, 2000.

[49] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus

with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[50] R. Cleve, “Limits on the security of coin flips when half the processors are faulty,” in

STOC ’86, pp. 364–369.

[51] S. Mauw, S. Radomirovic, and M. Dashti, “Minimal message complexity of asynchronous

multi-party contract signing,” in CSF ’09.

[52] B. Kordy and S. Radomirovic, “Constructing optimistic multi-party contract signing

protocols,” in CSF 2012.

[53] S. Mauw and S. Radomirovic, “Generalizing multi-party contract signing,” in POST 2015.

[54] B. Pfitzmann, M. Schunter, and M. Waidner, “Optimal efficiency of optimistic contract

signing,” in PODC ’98, pp. 113–122.

[55] M. Schunter, “Optimistic fair exchange,” Ph.D. dissertation, Universität des Saarlandes,

2000, http://scidok.sulb.uni-saarland.de/volltexte/2004/233.

[56] M. T. Dashti, “Efficiency of optimistic fair exchange using trusted devices,” ACM Trans.

Auton. Adapt. Syst., vol. 7, no. 1, pp. 3:1–3:18, May 2012.

[57] L. Lamport, “Lower bounds for asynchronous consensus,” Distrib. Comput., vol. 19,

no. 2, pp. 104–125, 2006.

140

Bibliography

[58] M. C. Newey, “Notes on a problem involving permutations as subsequences.” Stanford,

CA, USA, Tech. Rep., 1973.

[59] E. Zălinescu, “Shorter strings containing all k-element permutations,” Information

Processing Letters, vol. 111, no. 12, pp. 605 – 608, 2011.

[60] S. Radomirovic, “A construction of short sequences containing all permutations of a set

as subsequences,” The Electronic Journal of Combinatorics, vol. 19, no. 4, 2012.

[61] R. Guerraoui and J. Wang, “How fast can a distributed transaction commit?” in PODS

’17, 2017, pp. 107–122.

[62] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions of consistency and

predicate locks in a database system,” Commun. ACM, vol. 19, no. 11, pp. 624–633, 1976.

[63] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction management in the r* distributed

database management system,” ACM Trans. Database Syst., vol. 11, no. 4, pp. 378–396,

1986.

[64] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen,

N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Yahoo!’s hosted data serving platform,” Proc.

VLDB Endow., vol. 1, no. 2, pp. 1277–1288, 2008.

[65] V. Hadzilacos, “On the relationship between the atomic commitment and consensus

problems,” in Proceedings of the Workshop on Fault-Tolerant Distributed Computing,

1990, pp. 201–208.

[66] R. Guerraoui, “Revisiting the relationship between non-blocking atomic commitment

and consensus,” in WDAG ’95, pp. 87–100.

[67] B. Charron-Bost, “Agreement problems in fault-tolerant distributed systems,” in SOF-

SEM ’01, pp. 10–32.

[68] R. Guerraoui, “Non-blocking atomic commit in asynchronous distributed systems with

failure detectors,” Distrib. Comput., vol. 15, no. 1, pp. 17–25, 2002.

[69] R. Guerraoui, V. Hadzilacos, P. Kuznetsov, and S. Toueg, “The weakest failure detectors to

solve quittable consensus and nonblocking atomic commit,” SIAM J. Comput., vol. 41,

no. 6, pp. 1343–1379, 2012.

[70] K. V. S. Ramarao, “Complexity of distributed commit protocols,” Acta Informatica, vol. 26,

no. 6, pp. 577–595, 1989.

[71] I. Keidar and D. Dolev, “Increasing the resilience of atomic commit, at no additional

cost,” in PODS ’95, pp. 245–254.

[72] R. Guerraoui, M. Larrea, and A. Schiper, “Reducing the cost for non-blocking in atomic

commitment,” in ICDCS ’96, pp. 692–697.

141

Bibliography

[73] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM Trans. Database Syst.,

vol. 31, no. 1, pp. 133–160, 2006.

[74] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans.

Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[75] R. Guerraoui, “Indulgent algorithms (preliminary version),” in PODC ’00, pp. 289–297.

[76] R. Guerraoui and N. Lynch, “A general characterization of indulgence,” ACM Trans.

Auton. Adapt. Syst., vol. 3, no. 4, pp. 20:1–20:19, 2008.

[77] G. Taubenfeld, “Computing in the presence of timing failures,” in ICDCS ’06, pp. 16–16.

[78] P. Dutta and R. Guerraoui, “The inherent price of indulgence,” Distrib. Comput., vol. 18,

no. 1, pp. 85–98, 2005.

[79] R. Guerraoui and M. Raynal, “The information structure of indulgent consensus,” IEEE

Trans. Comput., vol. 53, no. 4, pp. 453–466, 2004.

[80] L. Sampaio and F. Brasileiro, “Adaptive indulgent consensus,” in DSN’05, pp. 422–431.

[81] O. Bakr and I. Keidar, “Evaluating the running time of a communication round over the

internet,” in PODC ’02, pp. 243–252.

[82] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial synchrony,”

J. ACM, vol. 35, no. 2, pp. 288–323, 1988.

[83] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,”

J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[84] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for solving

consensus,” J. ACM, vol. 43, no. 4, pp. 685–722, 1996.

[85] C. Cachin, R. Guerraoui, and L. A. Rodrigues, Introduction to Reliable and Secure Dis-

tributed Programming. Springer Berlin Heidelberg, 2011.

[86] B. Charron-Bost and A. Schiper, “Uniform consensus is harder than consensus,” J.

Algorithms, vol. 51, no. 1, pp. 15 – 37, 2004.

[87] R. D. Prisco, B. Lampson, and N. Lynch, “Revisiting the paxos algorithm,” Theoretical

Computer Science, vol. 243, no. 1, pp. 35 – 91, 2000.

[88] R. Guerraoui and A. Schiper, “The generic consensus service,” IEEE Trans. Softw. Eng.,

vol. 27, no. 1, pp. 29–41, 2001.

[89] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun.

ACM, vol. 21, no. 7, pp. 558–565, 1978.

[90] P. Dutta, R. Guerraoui, and B. Pochon, “Fast non-blocking atomic commit: an inherent

trade-off,” Inform. Process. Lett., vol. 91, no. 4, pp. 195 – 200, 2004.

142

Bibliography

[91] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[92] M. Abdallah, R. Guerraoui, and P. Pucheral, “One-phase commit: does it make sense?”

in ICPADS ’98, pp. 182–192.

[93] Y. J. Al-Houmaily and P. K. Chrysanthis, “An atomic commit protocol for gigabit-

networked distributed database systems,” J. Syst. Architect., vol. 46, no. 9, pp. 809 –

833, 2000.

[94] J. W. Stamos and F. Cristian, “A low-cost atomic commit protocol,” in SRDS ’90, pp. 66–75.

[95] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete, “Mdcc: Multi-data center

consistency,” in EuroSys ’13, pp. 113–126.

[96] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi, “Low-latency multi-

datacenter databases using replicated commit,” Proc. VLDB Endow., vol. 6, no. 9, pp.

661–672, 2013.

[97] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi, “Calvin: Fast

distributed transactions for partitioned database systems,” in SIGMOD ’12, pp. 1–12.

[98] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel, “Distributed transactions:

Dissecting the nightmare,” CoRR, vol. abs/1803.06341, 2018. [Online]. Available:

http://arxiv.org/abs/1803.06341

[99] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,”

SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010.

[100] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman, B. Ghosh, A. Curtis, O. Seeliger,

Z. Zhang, A. Auradar, C. Beaver, G. Brandt, M. Gandhi, K. Gopalakrishna, W. Ip, S. Jgadish,

S. Lu, A. Pachev, A. Ramesh, A. Sebastian, R. Shanbhag, S. Subramaniam, Y. Sun, S. Top-

iwala, C. Tran, J. Westerman, and D. Zhang, “On brewing fresh espresso: Linkedin’s

distributed data serving platform,” in SIGMOD ’13, 2013, pp. 1135–1146.

[101] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson, J. Leon, Y. Li, A. Lloyd,

and V. Yushprakh, “Megastore: Providing scalable, highly available storage for interactive

services,” in CIDR 2011, 2011, pp. 223–234.

[102] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li, “Transaction chains:

Achieving serializability with low latency in geo-distributed storage systems,” in SOSP

’13, 2013, pp. 276–291.

[103] W. S. I. Jake Brutlag, “Speed matters,” Online, 2009, https://research.googleblog.com/

2009/06/speed-matters.html.

[104] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent

objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, pp. 463–492, Jul. 1990.

143

Bibliography

[105] L. Lamport, “On interprocess communication,” Distributed Computing, vol. 1, no. 2, pp.

77–85, Jun 1986.

[106] E. A. Brewer, “Towards robust distributed systems (invited talk),” in PODC ’00.

[107] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services,” SIGACT News, vol. 33, no. 2, pp. 51–59, Jun. 2002.

[108] R. J. Lipton and J. Sandberg, “Pram: A scalable shared memory,” Department of

Computer Science, Princeton University, Tech. Rep. TR-180-88, 1988, https://www.

cs.princeton.edu/research/techreps/TR-180-88.

[109] H. Attiya and J. L. Welch, “Sequential consistency versus linearizability,” ACM Trans.

Comput. Syst., vol. 12, no. 2, pp. 91–122, May 1994.

[110] M. Mavronicolas and D. Roth, “Linearizable read/write objects,” Theoretical Computer

Science, vol. 220, no. 1, pp. 267 – 319, 1999, distributed Algorithms.

[111] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal consistency,” in

SIGMOD ’13, 2013, pp. 761–772.

[112] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in

Database Systems. Addison-Wesley Longman Publishing Co., Inc., 1987.

[113] C. H. Papadimitriou, “The serializability of concurrent database updates,” J. ACM, vol. 26,

no. 4, pp. 631–653, Oct. 1979.

[114] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues, “Making geo-

replicated systems fast as possible, consistent when necessary,” in OSDI 12, 2012, pp.

265–278.

[115] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and

M. Shapiro, “Putting consistency back into eventual consistency,” in EuroSys ’15, 2015,

pp. 6:1–6:16.

[116] S. Burckhardt, Principles of Eventual Consistency. Now Publishers, October 2014, vol. 1.

[117] A. Bouajjani, C. Enea, R. Guerraoui, and J. Hamza, “On verifying causal consistency,”

SIGPLAN Not., vol. 52, no. 1, pp. 626–638, Jan. 2017.

[118] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+ consistent datastore

based on chain replication,” in Proceedings of the 8th ACM European Conference on

Computer Systems, ser. EuroSys ’13, pp. 85–98.

[119] L. A. Prince Mahajan and M. Dahlin, “Consistency, availability, and convergence,” De-

partment of Computer Science, The University of Texas at Austin, Tech. Rep. UTCS

TR-11-22, 2011, http://www.cs.utexas.edu/users/dahlin/papers/cac-tr.pdf.

144

Bibliography

[120] H. Attiya, F. Ellen, and A. Morrison, “Limitations of highly-available eventually-

consistent data stores,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,

no. 1, pp. 141–155, Jan 2017.

[121] Z. Xiang and N. H. Vaidya, “Lower bounds and algorithm for partially replicated causally

consistent shared memory,” CoRR, vol. abs/1703.05424, 2017. [Online]. Available:

http://arxiv.org/abs/1703.05424

[122] M. Roohitavaf, M. Demirbas, and S. Kulkarni, “Causalspartan: Causal consistency for

distributed data stores using hybrid logical clocks,” in 2017 IEEE 36th Symposium on

Reliable Distributed Systems (SRDS), 2017, pp. 184–193.

[123] R. Guerraoui and M. Kapalka, “On the correctness of transactional memory,” in PPoPP

’08, 2008, pp. 175–184.

[124] H. Attiya, E. Hillel, and A. Milani, “Inherent limitations on disjoint-access parallel

implementations of transactional memory,” Theory of Computing Systems, vol. 49, no. 4,

pp. 698–719, Nov 2011.

[125] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia, “Disjoint-access paral-

lelism: Impossibility, possibility, and cost of transactional memory implementations,”

in Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, ser.

PODC ’15, 2015, pp. 217–226.

[126] D. Perelman, R. Fan, and I. Keidar, “On maintaining multiple versions in stm,” in PODC

’10, pp. 16–25.

[127] R. Guerraoui and J. Wang, “Optimal fair computation,” in DISC 2016, 2016, pp. 143–157.

[128] S. Micali, “Simple and fast optimistic protocols for fair electronic exchange,” in PODC

’03.

[129] D. E. Knuth, “Open problems with a computational flavor, mimeographed notes for a

seminar on combinatorics,” 1971.

[130] D. Kleitman and D. Kwiatkowski, “A lower bound on the length of a sequence containing

all permutations as subsequences,” Journal of Combinatorial Theory, Series A, vol. 21,

no. 2, pp. 129 – 136, 1976.

[131] L. Adleman, “Short permutation strings,” Discrete Mathematics, vol. 10, no. 2, pp. 197 –

200, 1974.

[132] P. Koutas and T. Hu, “Shortest string containing all permutations,” Discrete Mathematics,

vol. 11, no. 2, pp. 125 – 132, 1975.

[133] J. Camenisch and I. Damgärd, “Verifiable encryption, group encryption, and their appli-

cations to separable group signatures and signature sharing schemes,” in ASIACRYPT

’00, pp. 331–345.

145

Bibliography

[134] C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology, vol. 4,

no. 3, pp. 161–174, 1991.

[135] D. Kravitz, “Digital signature algorithm,” 1993, uS Patent 5,231,668.

[136] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and

signature problems,” in CRYPTO ’86, pp. 186–194.

[137] H. Ong and C. Schnorr, “Fast signature generation with a fiat shamir-like scheme,” in

EUROCRYPT ’90, pp. 432–440.

[138] L. Guillou and J.-J. Quisquater, “A “paradoxical” indentity-based signature scheme

resulting from zero-knowledge,” in CRYPTO ’88, pp. 216–231.

[139] G. Oded, Foundations of Cryptography: Volume 2, Basic Applications. Cambridge

University Press, 2009.

[140] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008.

[141] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System

Sciences, vol. 28, no. 2, pp. 270 – 299, 1984.

[142] A. C. Yao, “Theory and application of trapdoor functions,” in SFCS ’82, pp. 80–91.

[143] S. D. Gordon and J. Katz, TCC ’09, ch. Complete Fairness in Multi-party Computation

without an Honest Majority, pp. 19–35.

[144] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell, “Complete fairness in secure two-party

computation,” J. ACM, vol. 58, no. 6, pp. 24:1–24:37, 2011.

[145] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryptography.

CRC Press, Inc., 1996.

[146] I. 9594-8, “Information technology - open systems interconnection - the directory:

Authentication framework,” 1995, (equivalent to ITU-T Recommendation X.509, 1993).

[147] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and

signature problems,” in CRYPTO ’87, pp. 186–194.

[148] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing

efficient protocols,” in CCS ’93, pp. 62–73.

[149] A. Küpçü and A. Lysyanskaya, “Usable optimistic fair exchange,” Computer Networks,

vol. 56, no. 1, pp. 50 – 63, 2012.

[150] G. Ateniese, “Efficient verifiable encryption (and fair exchange) of digital signatures,” in

CCS ’99, pp. 138–146.

[151] A. M. Alaraj, “Simple and efficient contract signing protocol,” CoRR, vol. abs/1204.1646,

2012. [Online]. Available: http://arxiv.org/abs/1204.1646

146

Bibliography

[152] R. Guerraoui and L. Rodrigues, Introduction to Reliable Distributed Programming.

Springer-Verlag New York, Inc., 2006.

[153] G. Draper-Gil, J.-L. A. Ferrer-Gomila, M. Hinarejos, and J. Zhou, “On the efficiency of

multi-party contract signing protocols,” in ISC 2015, pp. 221–232.

[154] G. Goren and Y. Moses, “Silence,” CoRR, vol. abs/1805.07954, 2018. [Online]. Available:

http://arxiv.org/abs/1805.07954

147

Jingjing WANG

Route de Crochy 14
1024, Ecublens
Switzerland

(0041) 078-845-6668
jingjing.wang@epfl.ch
people.epfl.ch/jingjing.wang

Research Experience
Distributed Programming Laboratory, École polytechnique fédérale de Lausanne, Switzerland
Research Assistant. September 2013 - Present, Supervisor: Prof. Rachid GUERRAOUI

• Causally consistent key-value stores: Discovered impossibility results of an efficient, available and
eventually visible implementation of a causally consistent key-value store, implying the cost of a fast
implementation of read transactions

• Permissionless (distributed) blockchain: Formalized the probability of block mining in the pres-
ence of network delays; proved that among honest miners, a miner of lower computational power can
mine much fewer blocks than expected, which indeed depends on the network delays

• Optimal distributed atomic commit: Found the time and message complexity of atomic commit
considering crash and/or network failures; proposed a delay-optimal protocol that tolerates crash and
network failures

• Optimal optimistic n-party fair computation: Proved the first tight lower-bound on the message
complexity by reducing the problem to the shortest permutation sequence in combinatorics

• Private recommender systems: Proved the differential privacy guarantee of random sampling in a
user-based collaborative filtering recommender; designed and implemented the prototype of an efficient
homomorphic encryption scheme for integers

• Private k nearest neighbors: Formalized the privacy guarantee in terms of information leakage in
the context of distributed approximate k nearest neighbor algorithms

Cryptography and Information Security Laboratory, Shanghai Jiao Tong University, China
Research Assistant. December 2009 - March 2013, Supervisor: Prof. Kefei CHEN

• Fast spectra attacks: Proved bounds on the data complexity of fast spectra attacks against stream
ciphers in general

• Algebraic attacks: Proposed one of the most efficient algebraic attack against nonlinear filter gen-
erators (of which Bluetooth E0 keystream generator is an example)

Publications

• Didona, D., Guerraoui, R., Wang, J., and Zwaenepoel W.: Causal Consistency and Latency Opti-
mality: Friend or Foe? (Alphabetical Order)
VLDB 2018 (The International Conference on Very Large Data Bases)

• Guerraoui, R. and Wang, J.: On the Unfairness of Blockchain (Alphabetical Order)
NETYS 2018 (The International Conference on Networked Systems)

• Guerraoui, R. and Wang, J.: How Fast can a Distributed Transaction Commit? (Alphabetical Order)
SIGMOD/PODS 2017 (Symposium on Principles of Database Systems)

• Guerraoui, R., Kermarrec, A-M., Patra, R., Valiyev, M., and Wang, J.: I Know Nothing About You
But Here Is What You Might Like (Alphabetical Order)
DSN 2017 (International Conference on Dependable Systems and Networks)

• Guerraoui, R. and Wang, J.: Optimal Fair Computation (Alphabetical Order)
DISC 2016 (International Symposium on Distributed Computing)

• Frey, D., Guerraoui, R., Kermarrec, AM., Rault, A., Taiani, F., Wang, J.: Hide & Share: Landmark-
based Similarity for Private KNN Computation (Alphabetical Order)
DSN 2015 (International Conference on Dependable Systems and Networks)

• Wang, J., Chen, K., Zhu, S.: Annihilators of Fast Discrete Fourier Spectra Attacks
IWSEC 2012 (International Workshop on Security)

• Wang, J., Li, X., Chen, K., Zhang, W.: Attack Based on Direct Sum Decomposition against Nonlinear
Filter Generator
AFRICACRYPT 2012 (International Conference on Cryptology in Africa) 149

Jingjing Wang Page 2

Conference Presentations & Invited Talks

• On the Unfairness of Blockchain. Conference presentation at NETYS 2018, Essaouira, Morocco. May,
2018

• How Fast can a Distributed Transaction Commit?. Conference presentation at SIGMOD/PODS 2017,
Chicago, USA. May, 2017

• Optimal Fair Computation. Conference presentation at DISC 2016, Paris, France. September, 2016
(A preliminary version also presented at Winter School on Hot Topics in Distributed Computing, La
Plagne, France. March, 2014)

• I Know Nothing About You But Here Is What You Might Like. Invited talk at ABB, Zurich, Switzer-
land. April, 2015

• Attack Based on Direct Sum Decomposition against Nonlinear Filter Generator. Conference presenta-
tion at AFRICACRYPT 2012, Ifrane, Morocco. July, 2012

Education

• École polytechnique fédérale de Lausanne, Lausanne, Switzerland
PhD candidate, Computer, Communication and Information Sciences. September 2013 - Present

• Shanghai Jiao Tong University, Shanghai, China
Master of Science, Computer Science and Technology, March 2013

• Shanghai Jiao Tong University, Shanghai, China
Bachelor of Science, Computer Science and Technology, June 2010

Work Experience
Software Engineer Intern at Nuance Communications, Shanghai, China. April - July 2013

• Text-to-speech: Implemented and evaluated DAG-based word segmentation with different data struc-
tures for dictionary, including a compact radix trie, a hashtable trie, and with/without computation
of floating points; implemented tools: a POS tagger based on Hidden Markov Model and the trigram
model, and a tool to clean data from different encoding schemes

• User-friendliness and efficiency: Implemented core functions in C under Linux; ported implemen-
tations to Windows; augmented each C program with Python interfaces for both Linux and Windows
platforms

Summer Intern Program at Microsoft STBC, Shanghai, China. June - September 2012
• Colorado server maintenance: Investigated root causes of user-reported issues of Colorado servers

and debugged C++ source codes

• Azure service monitor: Implemented automatic report generation on performance and connectivity
alerts for Azure services by System Center Operations Manager and shell scripts; documented the goal,
requirements, and design overview of the project

Summer Internship at Saybot (Shanghai) Inc., Shanghai, China. July - September 2010
• Internal website: Implemented Drag&Drop file upload in Django, HTML5 and JQuery for Firefox,

Chrome and IE browsers

• Internal tool development: Implemented tools in Python to document audio files in a directory
into CSV and JSON, and slice and join audio files

Teaching Experience

• Teaching Assistant for CS 453 Concurrent Algorithms (Fall 2015, Fall 2016, Fall 2017), MATH
232 Probability and Statistics (Spring 2016), PHYS 114 General physics II (Fall 2014), at Faculté
Informatique et Communications, École polytechnique fédérale de Lausanne, Switzerland

• Teaching Assistant for CS 413 Cryptography and Computer Security (Spring 2012, Fall 2011), MA
208 Discrete Mathematics (Fall 2010), at Department of Computer Science and Engineering, Shanghai
Jiao Tong University, China

150

Jingjing Wang Page 3

Mentoring Experience

• Supervisor for a semester project (12 credits for master students) on “Implementation of an indulgent
atomic commit protocol in CloudTPS”, Lorenceau Pablo Camille, September 2017 - December 2017

• Supervisor for a summer internship on “Performance evaluation of an indulgent atomic commit
protocol”, De Moor Florestan Laurentin Marie, May - August 2017

Awards and Honors

• EPFL IC School Fellowship (2013)

• Google Anita Borg Memorial Scholarship: China (2012): Awarded based on the strength of both
academic background and demonstrated leadership

• National Excellence Scholarship (2011): Highest honorary scholarship for graduate students awarded
by Ministry of Education in China

• Shanghai Jiao Tong University Scholarship for Graduate Study (2011): First-class scholarship.
Full tuition waiver and stipend of 260 yuan/month

• Second Prize in the National Post-Graduate Mathematical Contest in Modeling (2011)

• People’s Scholarship (2009)

• Shanghai Jiao Tong University Outstanding Scholarship (2008; 2009)

• National Scholarship (2007; 2008): Highest honorary scholarship for undergraduate students awarded
by Ministry of Education in China

Languages
Chinese Mandarin (native), English (fluent), French (basic)

151

