7,043 research outputs found

    Advanced Transport Protocols for Wireless and Mobile Ad Hoc Networks

    Full text link
    This thesis comprises transport protocols in the following different areas of research: Fast Handover allows mobile IP end-devices to roam between wireless access routers without interruptions while communicating to devices in an infrastructure (e.g., in the Internet). This work optimizes the Fast Handover algorithm and evaluates the performance of the transport protocols UDP and TCP during fast handovers via measurements. The following part of the thesis focuses on vehicular ad hoc networks. The thesis designs and evaluates through simulations a point-to-point transport protocol for vehicular ad hoc networks and an algorithm to facilitate the reliable and efficient distribution of information in a geographically scoped target area. Finally, the thesis evaluates the impact of wireless radio fluctuations on the performance of an Ad Hoc Network. Measurements quantify the wireless radio fluctuations. Based on these results, the thesis develops a simple but realistic radio model that evaluates by means of simulations the impact on the performance of an ad hoc network. As a result, the work provides guidelines for future ad hoc protocol design

    The impact of propagation environment and traffic load on the performance of routing protocols in ad hoc networks

    Full text link
    Wireless networks are characterized by a dynamic topology triggered by the nodes mobility. Thus, the wireless multi-hops connection and the channel do not have a determinist behaviour such as: interference or multiple paths. Moreover, the nodes' invisibility makes the wireless channel difficult to detect. This wireless networks' behaviour should be scrutinized. In our study, we mainly focus on radio propagation models by observing the evolution of the routing layer's performances in terms of the characteristics of the physical layer. For this purpose, we first examine and then display the simulation findings of the impact of different radio propagation models on the performance of ad hoc networks. To fully understand how these various radio models influence the networks performance, we have compared the performances of several routing protocols (DSR, AODV, and DSDV) for each propagation model. To complete our study, a comparison of energy performance based routing protocols and propagation models are presented. In order to reach credible results, we focused on the notion of nodes' speed and the number of connections by using the well known network simulator NS-2.Comment: 13 pages, 5 figures, International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 201

    Effective link operation duration: a new routing metric for mobile ad hoc networks

    Get PDF
    The dynamic topology of mobile ad hoc networks (MANETs) is caused by node mobility and fading of the wireless link. Link reliability is often measured by the estimated lifetime and the stability of a link. In this paper we propose that the stability of a link can be represented by the time duration in which the two nodes at each end of a link are within each other’s transmission range and the fading is above an acceptable threshold. A novel routing metric, called effective link operation duration (ELOD), is proposed and implemented into AODV (AODV-ELOD). Simulation results show that proposed AODVELOD outperforms both AODV and the Flow Oriented Routing Protocol (FORP)

    Maximizing the Probability of Delivery of Multipoint Relay Broadcast Protocol in Wireless Ad Hoc Networks with a Realistic Physical Layer

    Get PDF
    It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that the lognormal shadowing model better suits to experimental simulations. Previous work on realistic scenarios focused on unicast, while broadcast requirements are fundamentally different and cannot be derived from unicast case. Therefore, broadcast protocols must be adapted in order to still be efficient under realistic assumptions. In this paper, we study the well-known multipoint relay protocol (MPR). In the latter, each node has to choose a set of neighbors to act as relays in order to cover the whole 2-hop neighborhood. We give experimental results showing that the original method provided to select the set of relays does not give good results with the realistic model. We also provide three new heuristics in replacement and their performances which demonstrate that they better suit to the considered model. The first one maximizes the probability of correct reception between the node and the considered relays multiplied by their coverage in the 2-hop neighborhood. The second one replaces the coverage by the average of the probabilities of correct reception between the considered neighbor and the 2-hop neighbors it covers. Finally, the third heuristic keeps the same concept as the second one, but tries to maximize the coverage level of the 2-hop neighborhood: 2-hop neighbors are still being considered as uncovered while their coverage level is not higher than a given coverage threshold, many neighbors may thus be selected to cover the same 2-hop neighbors

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    A testbed for MANETs: Implementation, experiences and learned lessons

    Get PDF
    In this paper, we present the implementation, experiences and lessons learned of our tesbed for Ad-hoc networks and Mobile Ad hoc Networks (MANETs). We used OLSR protocol for real experimental evaluation. We investigate the effect of mobility and topology changing in the throughput of a MANET. We study the impact of best-effort traffic for Mesh Topology and Linear Topology. In this work, we consider eight experimental models and we assess the performance of our testbed in terms of throughput, round trip time and packet loss. We found that some of the OLSR's problems can be solved, for instance the routing loop, but this protocol still has the self-interference problem. Also, there is an intricate interdependence between MAC layer and routing layer. We carried out the experiments considering stationary nodes of an Ad-hoc network and the node mobility of MANETs. We found that throughput of TCP was improved by reducing Link Quality Window Size (LQWS). For TCP data flow, we got better results when the LQWS value was 10. Moreover, we found that the node join and leave operations increase the packet loss. The OLSR protocol has a good performance when the source node is moving. However, the performance is not good when the relay nodes are moving.Peer ReviewedPostprint (published version

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks

    Full text link
    In this paper, we experimentally investigate the combined effect of human, antenna orientation in elevation direction and the ground effect on the Received Signal Strength Indicator (RSSI) parameter in the Wireless Sensor Network (WSN). In experiment, we use MICAz motes and consider different scenarios where antenna of the transmitter node is tilted in elevation direction. The motes were placed on the ground to take into account the ground effect on the RSSI. The effect of one, two and four persons on the RSSI is recorded. For one and two persons, different walking paces e.g. slow, medium and fast pace, are analysed. However, in case of four persons, random movement is carried out between the pair of motes. The experimental results show that some antenna orientation angles have drastic effect on the RSSI, even without any human activity. The fluctuation count and range of RSSI in different scenarios with same walking pace are completely different. Therefore, an efficient human activity algorithm is need that effectively takes into count the antenna elevation and other parameters to accurately detect the human activity in the WSN deployment region.Comment: 10th IEEE International Conference on Frontiers of Information Technology (FIT 12), 201

    Routing efficiency in wireless sensor-actor networks considering semi-automated architecture

    Get PDF
    Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version
    corecore