14,168 research outputs found

    Learning-Based Constraint Satisfaction With Sensing Restrictions

    Get PDF
    In this paper we consider graph-coloring problems, an important subset of general constraint satisfaction problems that arise in wireless resource allocation. We constructively establish the existence of fully decentralized learning-based algorithms that are able to find a proper coloring even in the presence of strong sensing restrictions, in particular sensing asymmetry of the type encountered when hidden terminals are present. Our main analytic contribution is to establish sufficient conditions on the sensing behaviour to ensure that the solvers find satisfying assignments with probability one. These conditions take the form of connectivity requirements on the induced sensing graph. These requirements are mild, and we demonstrate that they are commonly satisfied in wireless allocation tasks. We argue that our results are of considerable practical importance in view of the prevalence of both communication and sensing restrictions in wireless resource allocation problems. The class of algorithms analysed here requires no message-passing whatsoever between wireless devices, and we show that they continue to perform well even when devices are only able to carry out constrained sensing of the surrounding radio environment

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Non-cooperative Feedback Rate Control Game for Channel State Information in Wireless Networks

    Full text link
    It has been well recognized that channel state information (CSI) feedback is of great importance for dowlink transmissions of closed-loop wireless networks. However, the existing work typically researched the CSI feedback problem for each individual mobile station (MS), and thus, cannot efficiently model the interactions among self-interested mobile users in the network level. To this end, in this paper, we propose an alternative approach to investigate the CSI feedback rate control problem in the analytical setting of a game theoretic framework, in which a multiple-antenna base station (BS) communicates with a number of co-channel MSs through linear precoder. Specifically, we first present a non-cooperative feedback-rate control game (NFC), in which each MS selects the feedback rate to maximize its performance in a distributed way. To improve efficiency from a social optimum point of view, we then introduce pricing, called the non-cooperative feedback-rate control game with price (NFCP). The game utility is defined as the performance gain by CSI feedback minus the price as a linear function of the CSI feedback rate. The existence of the Nash equilibrium of such games is investigated, and two types of feedback protocols (FDMA and CSMA) are studied. Simulation results show that by adjusting the pricing factor, the distributed NFCP game results in close optimal performance compared with that of the centralized scheme.Comment: 26 pages, 10 figures; IEEE Journal on Selected Areas in Communications, special issue on Game Theory in Wireless Communications, 201
    • …
    corecore