2,061 research outputs found

    Evaluation of the impact of mobility models on handover in WLAN indoor environments

    Get PDF
    Nowadays, mobility models are used to simulate realistic movements produced by the users of a wireless or a mobile network. The aim of this project is to evaluate the impact of mobility models on handover process in Wireless Local Area Networks (WLAN) indoor environments, using the network simulator NS-2. This document contains a previous theoretical characterization of the basic mobility models and their application in the network simulator NS-2, a study of the infrastructure mode support and a modification of the current handover algorithm. The study focuses on two mobility models in WLAN indoor environments: one where movements are completely random (i.e. Random Waypoint) and another one where next step depends on previous movements (i.e. Gauss-Markov). In order to support infrastructure mode operation in WLAN, a new patch with modifications of the source code is applied. Furthermore, a first approach for the development of a new handover algorithm is presented. Simulations are run in two different scenarios: one with 4 Access Points (APs) offering full coverage in the simulated area, and another one with 8 APs, simulating overcoverage in order to guarantee higher capacity for a higher density of users. Results are presented showing a comparative of the cell residence time (CRT) for each scenario. From the results obtained, it is possible to see that the CRT changes depending on the algorithm and the mobility model applied, being lower when the Random Waypoint model is applied. On the other hand, the new handover algorithm designed from the current implementation leads to a decrease in the average CRT

    Group behavior impact on an opportunistic localization scheme

    Get PDF
    In this paper we tackled the localization problem from an opportunistic perspective, according to which a node can infer its own spatial position by exchanging data with passing by nodes, called peers. We consider an opportunistic localization algorithm based on the linear matrix inequality (LMI) method coupled with a weighted barycenter algorithm. This scheme has been previously analyzed in scenarios with random deployment of peers, proving its effectiveness. In this paper, we extend the analysis by considering more realistic mobility models for peer nodes. More specifically, we consider two mobility models, namely the Group Random Waypoint Mobility Model and the Group Random Pedestrian Mobility Model, which is an improvement of the first one. Hence, we analyze by simulation the opportunistic localization algorithm for both the models, in order to gain insights on the impact of nodes mobility pattern onto the localization performance. The simulation results show that the mobility model has non-negligible effect on the final localization error, though the performance of the opportunistic localization scheme remains acceptable in all the considered scenarios

    Performance evaluation of an efficient counter-based scheme for mobile ad hoc networks based on realistic mobility model

    Get PDF
    Flooding is the simplest and commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision in the network, a phenomenon referred to as broadcast storm problem. Several probabilistic broadcast schemes have been proposed to mitigate this problem inherent with flooding. Recently, we have proposed a hybrid-based scheme as one of the probabilistic scheme, which combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Despite these considerable numbers of proposed broadcast schemes, majority of these schemes’ performance evaluation was based on random waypoint model. In this paper, we evaluate the performance of our broadcast scheme using a community based mobility model which is based on social network theory and compare it against widely used random waypoint mobility model. Simulation results have shown that using unrealistic movement pattern does not truly reflect on the actual performance of the scheme in terms of saved-rebroadcast, reachability and end to end delay

    Plausible Mobility: Inferring Movement from Contacts

    Full text link
    We address the difficult question of inferring plausible node mobility based only on information from wireless contact traces. Working with mobility information allows richer protocol simulations, particularly in dense networks, but requires complex set-ups to measure, whereas contact information is easier to measure but only allows for simplistic simulation models. In a contact trace a lot of node movement information is irretrievably lost so the original positions and velocities are in general out of reach. We propose a fast heuristic algorithm, inspired by dynamic force-based graph drawing, capable of inferring a plausible movement from any contact trace, and evaluate it on both synthetic and real-life contact traces. Our results reveal that (i) the quality of the inferred mobility is directly linked to the precision of the measured contact trace, and (ii) the simple addition of appropriate anticipation forces between nodes leads to an accurate inferred mobility.Comment: 8 pages, 8 figures, 1 tabl

    Performance evaluation of flooding in MANETs in the presence of multi-broadcast traffic

    Get PDF
    Broadcasting has many important uses and several mobile ad hoc networks (MANETs) protocols assume the availability of an underlying broadcast service. Applications, which make use of broadcasting, include LAN emulation, paging a particular node. However, broadcasting induces what is known as the "broadcast storm problem" which causes severe degradation in network performance, due to excessive redundant retransmission, collision, and contention. Although probabilistic flooding has been one of the earliest suggested approaches to broadcasting. There has not been so far any attempt to analyse its performance behaviour in MANETs. This paper investigates using extensive ns-2 simulations the effects of a number of important parameters in a MANET, including node speed, pause time and, traffic load, on the performance of probabilistic flooding. The results reveal that while these parameters have a critical impact on the reachability achieved by probabilistic flooding, they have relatively a lower effect on the number of saved rebroadcast packets
    • …
    corecore