7 research outputs found

    The IBMAP approach for Markov networks structure learning

    Full text link
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum

    Learning Markov networks with context-specific independences

    Full text link
    Learning the Markov network structure from data is a problem that has received considerable attention in machine learning, and in many other application fields. This work focuses on a particular approach for this purpose called independence-based learning. Such approach guarantees the learning of the correct structure efficiently, whenever data is sufficient for representing the underlying distribution. However, an important issue of such approach is that the learned structures are encoded in an undirected graph. The problem with graphs is that they cannot encode some types of independence relations, such as the context-specific independences. They are a particular case of conditional independences that is true only for a certain assignment of its conditioning set, in contrast to conditional independences that must hold for all its assignments. In this work we present CSPC, an independence-based algorithm for learning structures that encode context-specific independences, and encoding them in a log-linear model, instead of a graph. The central idea of CSPC is combining the theoretical guarantees provided by the independence-based approach with the benefits of representing complex structures by using features in a log-linear model. We present experiments in a synthetic case, showing that CSPC is more accurate than the state-of-the-art IB algorithms when the underlying distribution contains CSIs.Comment: 8 pages, 6 figure

    The Grow-Shrink strategy for learning Markov network structures constrained by context-specific independences

    Full text link
    Markov networks are models for compactly representing complex probability distributions. They are composed by a structure and a set of numerical weights. The structure qualitatively describes independences in the distribution, which can be exploited to factorize the distribution into a set of compact functions. A key application for learning structures from data is to automatically discover knowledge. In practice, structure learning algorithms focused on "knowledge discovery" present a limitation: they use a coarse-grained representation of the structure. As a result, this representation cannot describe context-specific independences. Very recently, an algorithm called CSPC was designed to overcome this limitation, but it has a high computational complexity. This work tries to mitigate this downside presenting CSGS, an algorithm that uses the Grow-Shrink strategy for reducing unnecessary computations. On an empirical evaluation, the structures learned by CSGS achieve competitive accuracies and lower computational complexity with respect to those obtained by CSPC.Comment: 12 pages, and 8 figures. This works was presented in IBERAMIA 201

    Speeding up the execution of a large number of statistical tests of independence

    Get PDF
    A massive amount of conditional independence tests on data must be performed in the problem of learning the structure of probabilistic graphical models when using the independence-based approach. An intermediate step in the computation of independence tests is the construction of contingency tables from the data. In this work we present an intelligent cache of contingency tables that allows the tables stored to be reused not only for the same test, in the not uncommon case that the test must be performed again, but for an exponential number of other tests, all those involving a subset of the variables of the test stored. In practice, however, not so many tests actually reuse the tables stored. We show results when testing the cache with IBMAP-HC, a recently proposed algorithm for learning the structure of Markov networks, a.k.a. undirected graphical models. The experiments show that in all cases, above 95% of the running time spent by IBMAP-HC in reading data is saved by the cache. The savings in running time for IBMAP-HC were up to 80% for datasets above 40,000 datapoints.Sociedad Argentina de Informática e Investigación Operativ

    Efficient comparison of independence structures of log-linear models

    Full text link
    Log-linear models are a family of probability distributions which capture a variety of relationships between variables, including context-specific independencies. There are a number of approaches for automatic learning of their independence structures from data, although to date, no efficient method exists for evaluating these approaches directly in terms of the structures of the models. The only known methods evaluate these approaches indirectly through the complete model produced, that includes not only the structure but also the model parameters, introducing potential distortions in the comparison. This work presents such a method, that is, a measure for the direct comparison of the independence structures of log-linear models, inspired by the Hamming distance comparison method used in undirected graphical models. The measure presented can be efficiently computed in terms of the number of variables of the domain, and is proven to be a distance metric
    corecore