4 research outputs found

    Dinamički odziv nove adaptivne modificirane povratne Legendrove neuronske mreže upravljanja sinkronim motorom s permanentnim magnetima za električni skuter

    Get PDF
    Because an electric scooter driven by permanent magnet synchronous motor (PMSM) servo-driven system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive modified recurrent Legendre neural network (NN) control system, which has fast convergence and provide high accuracy, is proposed to control for PMSM servo-driven electric scooter under the external disturbances and parameter variations in this study. The novel adaptive modified recurrent Legendre NN control system consists of a modified recurrent Legendre NN control with adaptation law and a remunerated control with estimation law. In addition, the online parameter tuning methodology of the modified recurrent Legendre NN control and the estimation law of the remunerated control can be derived by using the Lyapunov stability theorem and the gradient descent method. Furthermore, the modified recurrent Legendre NN with variable learning rate is proposed to raise convergence speed. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme.S obzirom da električni skuter pogonjen servo sustavom sa sinkroni motor s permanentnim magnetima ima nelinearnu dinamiku i vremenski promjenjive parametre, njegov dinamički model nije jednostavno odrediti u svrhu dizajniranja linearnog regulatora. Kako bi se riješio taj problem te povećala robusnost predložen je sustav upravljanja korištenjem adaptivne modificirane povratne Legendrove neuronske mreže za upravljanje skuterom pogonjenim servo sustavom sa sinkronim motorom uz prisustvo vanjskog poremećaja i promjenjivih parametara. Predloženo upravljanje ima brzu konvergenciju i visoku preciznost. Sustav upravljanja sastoji se od modificirane povratne Legendrove neuronske moreže s adaptivnim zakonom upravljanja i estimacijom. Dodatno, \u27on-line\u27 podešavanje parametara takvog sustava može se dobiti korištenjem Ljapunovljevog teorema o stabilnosti sustava i gradijente metode. Modificirana povratne Legendrove neuronska mreža s promjenjivim vremenom učenja predložena je za povećanje brzine konvergencije. Ispravnost predložene sheme upravljanja provjerena je eksperimentalno

    Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Get PDF
    In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM) drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method

    An Improved Adaptive Tracking Controller of Permanent Magnet Synchronous Motor

    Get PDF
    This paper proposes a new adaptive fuzzy neural control to suppress chaos and also to achieve the speed tracking control in a permanent magnet synchronous motor (PMSM) drive system with unknown parameters and uncertainties. The control scheme consists of fuzzy neural and compensatory controllers. The fuzzy neural controller with online parameter tuning is used to estimate the unknown nonlinear models and construct linearization feedback control law, while the compensatory controller is employed to attenuate the estimation error effects of the fuzzy neural network and ensure the robustness of the controlled system. Moreover, due to improvement in controller design, the singularity problem is surely avoided. Finally, numerical simulations are carried out to demonstrate that the proposed control scheme can successfully remove chaotic oscillations and allow the speed to follow the desired trajectory in a chaotic PMSM despite the existence of unknown models and uncertainties

    The Hybrid RFNN Control for a PMSM Drive Electric Scooter Using Rotor Flux Estimator

    No full text
    The hybrid recurrent fuzzy neural network (HRFNN) control for permanent magnet synchronous motor (PMSM) drive system using rotor flux estimator is developed to control electric scooter in this paper. First, the dynamic models of a PMSM drive system were derived in according to electric scooter. Owing to the load of electric scooter exited many uncertainties, for example, nonlinear friction force of the transmission belt, and so forth. The electric scooter with nonlinear uncertainties made the PI controller to disable speed tracking control. Moreover, in order to reduce interference of encoder and cost down, an HRFNN control system using rotor flux estimator was developed to control PMSM drive system in order to drive electric scooter. The rotor flux estimator consists of the estimation algorithm of rotor flux position and speed based on the back electromagnetic force (EMF) in order to supply with HRFNN controller. The HRFNN controller consists of the supervisor control, RFNN, and compensated control with adaptive law is applied to PMSM drive system. The parameters of RFNN are trained according to different speeds in electric scooter. The electric scooter is operated to provide disturbance torque. To show the effectiveness of the proposed controller, comparative studies with PI controller are demonstrated by experimental results
    corecore