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In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking
control in a chaotic permanent magnet synchronous motor (PMSM) drive system. The proposed controller consists of two parts.
The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models
for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation
errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation
results are provided to verify the validity and superiority of the proposed method.

1. Introduction

Nowadays, permanent magnet synchronous motors are
extensively used in industrial applications because it pos-
sesses many advantageous merits. Due to high power to
weight ratio, high torque to current ratio, fast response, high
power factor, simple structure, and low maintaining cost,
PMSMs were effectively applied to some fields of industry
which require high performances [1–4]. Nevertheless, there
are still numerous challenges in controlling a PMSM to get
the superior performances, because it has highly nonlinear
characteristics and chaotic motion.

The chaotic phenomenon in PMSMwas comprehensively
examined by Li et al. [5]. This study indicated that the
chaotic oscillations occur when the system parameters lie in
a certain region. Since the undesirable chaotic oscillations
can break down the system stability or even cause the drive
system to collapse, the chaos suppression and control in a
PMSM have received much attention in the field of nonlinear
control of electric motor. Until now, various control methods
have been developed for chaos suppression and control in
a PMSM, including nonlinear feedback control [6, 7], time
delay feedback control [8–10], backstepping control [11, 12],

sliding mode control [13], quasisliding mode control [14, 15],
dynamic surface control [16], and adaptive control [17, 18].
However, shortcomings still exist in these methods. An exact
mathematical model of a PMSM is necessary for these meth-
ods to calculate the control laws. This leads to difficulties in
applying these control methods to a real-time system where
the mathematical model might be dynamic and unknown
due to parameter perturbations and noise disturbances.
Moreover, time delay feedback control faces some problems
when the control target is not an equilibrium point or located
at unstable periodic orbit; determining the time delay is also
difficult. In conventional sliding mode control, chattering
often appears and it causes the heat loss in electrical power
circuits and undesirable vibrations in mechanical systems
leading to degrade the whole systems. Adaptive control can
work well even when the parameters vary, but cannot solve
the control problems when the mathematical model is deeply
changed due to external noises.

In recent years, fuzzy logic and neural networks have
exhibited the superior abilities in modeling and controlling
the highly uncertain, ill-defined, and complex systems [19–
22], especially in chaotic PMSM [23–25]. A fuzzy logic
controller can incorporate the expert experience of a human
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operator in the design of the controller in controlling a
process whose input-output relationship is described by
collection of fuzzy rules involving linguistic variables rather
than a complicated dynamic model. On the other hand,
neural networks have the potential for very complicated
behavior.The strong learning abilities allow a neural network
to generate input-output maps which can approximate any
continuous function with the required degree of accuracy.
These learning abilities equip neural networks to design
controllers which do not depend on exact mathematical
models. The combination of fuzzy logic system and neural
networks is known as fuzzy neural networks [26, 27] in which
a fuzzy logic system is expressed by a neural network. A fuzzy
neural network can exploit the fuzzy inference of a fuzzy logic
system and the learning abilities of a neural network. Then,
the fuzzy neural networks become powerful and confident
tools in controlling highly nonlinear and complex systems.

As the control methods mentioned above still have some
weaknesses, it is necessary to develop a improved controller
which can suppress chaos and obtain satisfied performance;
even the mathematical model of PMSM is significantly
varied due to parameter perturbations and external noise
disturbances. In order to meet these requirements, based on
a fuzzy neural network and incorporating the concept of
sliding mode control, we successfully develop an adaptive
slidingmodel control method. Since the developed controller
is derived from sliding mode control, it can inherit the
merits of sliding mode controller for controlling nonlinear
systems. Moreover, the use of fuzzy neural networks gives
the learning ability for the proposed controller to estimate
unknown models existing in the system. These abilities
allow the controller to operate effectively and robustly
even with unknown system parameters of the PMSM. In
contrast, many previous articles for chaos control of the
PMSM depend on the mathematical model of PMSM; that
is, an exact model of PMSM is necessary for designing
controllers. This also implies that these controllers cannot
work or work imprecisely when the system parameters or
model of PMSM are not sufficiently known. Therefore, in
comparison with previous articles, the proposed control
shows the improvements in controlling chaotic PMSM. The
developed controller cannot only suppress chaotic behaviors
in a PMSM but also allow the motor speed to follow the
desired trajectory, while the tracking error is led to zero
despite of the existence of uncertainties. In addition, chatter-
ing phenomenon can be removed by choosing the suitable
parameters for the designed controller. The robustness of
the developed controller can give us the feasibility to realize
the method in real-time system. Simulations results are
provided to illustrate the effectiveness and robustness of
the proposed controller.

The paper is organized as follows. In Section 2, the
dynamics of a PMSM and the formulation of the chaos
control problem are presented. The design of the adaptive
sliding mode controller as well as the stability analysis is
described in Section 3. In Section 4 the simulation results
are displayed to verify the validity of the proposed method.
Finally, the conclusion is given in Section 5.
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Figure 1: Chaotic motion in a PMSM with 𝜎 = 5.45 and 𝛾 = 20.

2. Problem Statement and Preliminaries

2.1. Mathematical Model of Chaotic PMSM. In dimensionless
form, the mathematical model of a smooth-air-gap PMSM
can be modeled as follows [5]:

𝑑𝜔

𝑑𝑡

= 𝜎 (𝑖𝑞 − 𝜔) + 𝑇,

𝑑𝑖𝑞

𝑑𝑡

= −𝑖𝑞 − 𝑖𝑑𝜔 + 𝛾𝜔 + 𝑢𝑞,

𝑑𝑖𝑑

𝑑𝑡

= −𝑖𝑑 + 𝑖𝑞𝜔 + 𝑢𝑑,

(1)

where 𝑖𝑑, 𝑖𝑞, and 𝜔 are state variables, which denote direct-
quadrature currents and motor angular frequency, respec-
tively. 𝑇𝐿, 𝑢𝑑, and 𝑢𝑞 represent the load torque and direct-
quadrature axis stator voltage components, respectively,
while 𝜎 and 𝛾 are system parameters.

In system (1), after an operating period, the external
inputs are set to zero, namely, 𝑇𝐿 = 𝑢𝑞 = 𝑢𝑑 = 0. Then, the
system in (1) becomes an unforced system as

𝑑𝜔

𝑑𝑡

= 𝜎 (𝑖𝑞 − 𝜔) ,

𝑑𝑖𝑞

𝑑𝑡

= −𝑖𝑞 − 𝑖𝑑𝜔 + 𝛾𝜔,

𝑑𝑖𝑑

𝑑𝑡

= −𝑖𝑑 + 𝑖𝑞𝜔.

(2)

The bifurcation and chaos phenomena of a PMSM drive
system have been completely studied by Li et al. [5]. System
(2) generates chaotic oscillationswhen the system parameters
and initial condition are set as 𝜎 = 5.45, 𝛾 = 20, and
⌊𝜔(0), 𝑖𝑞(0), 𝑖𝑑(0)⌋ = [2, 1, 3]. Figure 1 shows the typical
chaotic motion of system (2). To make an overall inspection
of the dynamical behavior of the PMSM, the bifurcation
diagrams of the motor angular frequency 𝜔 versus the
parameters 𝜎 and 𝛾, respectively, are also plotted as shown
in Figure 2. Since the chaotic oscillations in a PMSM can
destroy the stability of drive system or lead the system to
collapse, suppressing chaos, controlling speed, and ensuring
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Figure 2: Bifurcation diagrams of 𝜔 versus (a) 𝜎 with 𝛾 = 20, (b) 𝛾 with 𝜎 = 5.45.

the robustness against uncertainties in a PMSM drive system
are significantly necessary. In order to solve these problems,
we propose the adaptive sliding mode control technique
based on fuzzy neural networks.

2.2. Conventional Sliding Mode Control and Problem State-
ment. Let us consider the PMSM drive system as shown in
(2). In order to control this system, we add a control signal
𝑢 to the second differential equation as an adjustable variable
which is desirable for real applications. And for simplicity, we
introduce new notations as 𝑥1 = 𝜔, 𝑥2 = 𝑖𝑞, and 𝑥3 = 𝑖𝑑.
In this manner, the system in (2) with uncertainties can be
rewritten as follows:

�̇�1 = 𝜎 (𝑥2 − 𝑥1) + Δ 1,

�̇�2 = − 𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + Δ 2 + 𝑢,

�̇�3 = − 𝑥3 + 𝑥1𝑥2 + Δ
3
,

(3)

where Δ 𝑖 ∈ 𝑅, 𝑖 = 1, 2, 3, are uncertainties applied to the
PMSM due to parameter perturbation and external noise
disturbances. 𝜎 and 𝛾 are unknown system parameters and
located within the chaotic region [5].

Assumption 1. Δ 𝑖 ∈ 𝑅, 𝑖 = 1, 2, 3, are bounded functions;
further Δ 3 is zero when 𝑥1 = 𝑥2 = 0.

For suppressing chaos and controlling speed in the
PMSM, the system in (3) with output 𝑦(𝑡) = 𝑥1 can be
expressed in the standard form of single-input-single-output
(SISO) system as follows:

�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢, (4a)

𝑦 = ℎ (𝑥) , (4b)

where

𝑥 = [

[

𝑥1

𝑥2

𝑥3

]

]

, 𝑓 (𝑥) =
[

[

𝜎 (𝑥2 − 𝑥1) + Δ 1

−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + Δ 2

−𝑥3 + 𝑥1𝑥2 + Δ 3

]

]

,

𝑔 (𝑥) =
[

[

0

1

0

]

]

, ℎ (𝑥) = 𝑥1.

(5)

Taking the second order derivative of output 𝑦(𝑡) and the
control signal 𝑢 appearing in this expression, we can conclude
that the SISO system in (4a) and (4b) has relative degree 𝑟 =

2. Then using Lie derivative and letting 𝑎(𝑥) = 𝐿
2

𝑓
ℎ(𝑥) and

𝑏(𝑥) = 𝐿𝑔𝐿𝑓ℎ(𝑥), (4b) can be rewritten as

̈𝑦 = 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢, (6)

where

𝑎 (𝑥) = 𝐿
2

𝑓
ℎ (𝑥) = (−𝜎 +

𝜕Δ 1

𝜕𝑥1

) (𝜎𝑥2 − 𝜎𝑥1 + Δ 1)

+ (𝜎 +

𝜕Δ 1

𝜕𝑥2

) (−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + Δ 2)

+

𝜕Δ 1

𝜕𝑥3

(−𝑥3 + 𝑥1𝑥3 + Δ 3) ,

𝑏 (𝑥) = 𝐿𝑔𝐿𝑓ℎ (𝑥) = 𝜎 +

𝜕Δ 1

𝜕𝑥2

.

(7)

In order to guarantee that the system in (4a) and (4b) is
controllable for all 𝑥 ∈ 𝑅

3 in our study, we need a following
assumption.

Assumption 2. 𝑏(𝑥) is bounded from below by a positive
constant 𝑏; that is, 0 < 𝑏 ≤ 𝑏(𝑥), for all 𝑥 ∈ 𝑅

3.

The aim is to design a controller that can suppress chaos
and allow the output 𝑦(𝑡) ∈ 𝑅 to follow a given desired
trajectory 𝑦𝑑(𝑡) ∈ 𝑅.

Assumption 3. Desired trajectory 𝑦𝑑(𝑡) is smooth and
bounded up to the 2nd order; ̇𝑦𝑑(𝑡) and ̈𝑦𝑑(𝑡) are available
for measurement.

Let 𝑒(𝑡) = 𝑦(𝑡) − 𝑦𝑑(𝑡) be tracking error; we define a
switching surface 𝑆(𝑡) in the state space 𝑅3 as

𝑆 (𝑡) = (

𝑑

𝑑𝑡

+ 𝜆) 𝑒 (𝑡) = ̇𝑒 (𝑡) + 𝜆𝑒 (𝑡) , (8)

where 𝜆 is a positive constant. The equation 𝑆(𝑡) = 0 rep-
resents a linear differential equation whose solution implies
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that the tracking error 𝑒(𝑡) converges to zero with the time
constant 1/𝜆 [28]. Differentiating 𝑆(𝑡) with respect to time
and using (6), we obtain

̇𝑆 (𝑡) = ̈𝑒 (𝑡) + 𝜆 ̇𝑒 (𝑡)

= ̈𝑦 (𝑡) − ̈𝑦𝑑 (𝑡) + 𝜆 ̇𝑒 (𝑡)

= 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢 − ̈𝑦𝑑 (𝑡) + 𝜆 ̇𝑒 (𝑡) .

(9)

Let V(𝑡) be a new input variable and it is defined by

V (𝑡) = − ̈𝑦𝑑 (𝑡) + 𝜆 ̇𝑒 (𝑡) . (10)

Then (9) with V(𝑡) defined in (10) can be rewritten as

̇𝑆 (𝑡) = 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢 + V (𝑡) . (11)

In order to meet the control objective, the conventional
sliding mode control law can be used as

𝑢 =

1

𝑏 (𝑥)

(−𝑎 (𝑥) − V (𝑡) − 𝑘𝑆 (𝑡)) , (12)

where 𝑘 is a positive constant.
Substituting (12) into (11), one can get

̇𝑆 (𝑡) = −𝑘𝑆 (𝑡) . (13)

Equation (13) implies that both 𝑆(𝑡) and therefore 𝑒(𝑡)

converge to zero exponentially fast.
Moreover, by setting𝑥1 = 𝑥2 = 0 andusingAssumption 1,

the zero dynamics of the SISO system in (4a) and (4b) can be
described as �̇�3 = −𝑥3+Δ 3 = −𝑥3. Because the zero dynamics
is stable, we can conclude that the system in (4a) and (4b) is
a minimum phase system. Thus the state variable 𝑥3 is also
stable when both state variables, 𝑥1 and 𝑥2, are stable.

Since the uncertainties Δ 𝑖 ∈ 𝑅, 𝑖 = 1, 2, 3, and system
parameters 𝜎 and 𝛾 are unknown, the function 𝑎(𝑥) and
𝑏(𝑥) cannot be known exactly. The control law in (12) can
no longer be used to control the system. In order to solve
this problem, we develop an adaptive sliding mode control
method in which a neural network is employed to estimate
𝑎(𝑥) and 𝑏(𝑥) online.

2.3. Description of Fuzzy Neural Networks. In this section, we
describe the structure of a fuzzy neural networkwhich is used
to estimate the unknown nonlinear functions 𝑎(𝑥) and 𝑏(𝑥).

Let us start with the fuzzy logic system. The basic
structure of a fuzzy logic system consists of input fuzzifi-
cation, fuzzy rule base, fuzzy inference engine, and output
defuzzification. In our study, the input fuzzification is the
process of mapping inputs, state variable 𝑥1, 𝑥2, and 𝑥3, to
membership values in the input universes of discourse. The
fuzzy rule base is made of nine IF-THEN rules in which the
𝑖th rule is described in the form of

FR𝑖 : IF (𝑥1 is 𝐴
𝑖

1
AND 𝑥2 is 𝐴

𝑖

2
AND 𝑥3 is 𝐴

𝑖

3
)

THEN (𝑎 is 𝐵𝑖
𝑎
AND ̂

𝑏 is 𝐵𝑖
𝑏
) ,

(14)

Table 1: Parameters of Gaussian functions.

Parameter Value
𝑚
1

𝑗
−1

𝑚
2

𝑗
−0.75

𝑚
3

𝑗
−0.5

𝑚
4

𝑗
−0.25

𝑚
5

𝑗
0

𝑚
6

𝑗
0.25

𝑚
7

𝑗
0.5

𝑚
8

𝑗
0.75

𝑚
9

𝑗
1

𝑛 0.2

where 𝐴
𝑖

1
, 𝐴𝑖
2
, 𝐴𝑖
3
, 𝐵𝑖
𝑎
, and 𝐵

𝑖

𝑏
are fuzzy sets which are

represented by the membership functions 𝜇𝐴𝑖
1

, 𝜇𝐴𝑖
2

, 𝜇𝐴𝑖
3

, 𝜇𝐵𝑖
𝑎

,
and 𝜇𝐵

𝑖

𝑏

, respectively. 𝑎(𝑥) ∈ 𝑅 and ̂
𝑏(𝑥) ∈ 𝑅 are outputs

of the fuzzy logic system, which stand for the estimations of
𝑎(𝑥) and 𝑏(𝑥), respectively. 𝜇𝐵𝑖

𝑎

and 𝜇𝐵
𝑖

𝑏

are fuzzy singletons,
while 𝜇𝐴

𝑖

1

, 𝜇𝐴𝑖
2

, and 𝜇𝐴
𝑖

3

use Gaussian functions to calculate
its values as the following form:

𝜇𝐴
𝑖

𝑗

= exp[

[

−

(𝑥𝑗 − 𝑚
𝑖

𝑗
)

2

2𝑛
2

]

]

, (15)

where 𝑖 = 1, 2, . . . , 9 correspond with nine rules and 𝑗 =

1, 2, 3 correspond with three state variables. As the state
variables are normalized in a range of [−1, 1], the parameters
of the chosen Gaussian functions are given in the Table 1.
The fuzzy inference engine performs as a process of mapping
membership values from the input windows, through the
fuzzy rule base, to the output window. The fuzzy inference
engine employs product inference for mapping. The output
defuzzification is the procedure of mapping from a set of
inferred fuzzy signals contained within a fuzzy output win-
dow to a crisp signal. Based on center-average defuzzification
techniques, the outputs of the fuzzy logic system can be
expressed as follows:

𝑎 (𝑥) =

∑
9

𝑖=1
𝜃𝑎𝑖 (∏

3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

∑
9

𝑖=1
(∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

= 𝜃
𝑇

𝑎
𝜑 (𝑥) ,

̂
𝑏 (𝑥) =

∑
9

𝑖=1
𝜃𝑏𝑖 (∏

3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

∑
9

𝑖=1
(∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

= 𝜃
𝑇

𝑏
𝜑 (𝑥) ,

(16)

where 𝜃
𝑇

𝑎
= [𝜃𝑎1 𝜃𝑎2 ⋅ ⋅ ⋅ 𝜃𝑎9] and 𝜃

𝑇

𝑏
= [𝜃𝑏1 𝜃𝑏2 ⋅ ⋅ ⋅ 𝜃𝑏9]

are weighting vectors adjusted according to the adaptive laws
described in the next section. The fuzzy singletons 𝜇𝐵𝑖

𝑎

and
𝜇𝐵
𝑖

𝑏

, respectively, achieve maximum values at the points 𝜃𝑎𝑖
and 𝜃𝑏𝑖 with 𝑖 = 1, 2, . . . , 9; that is, 𝜇𝐵𝑖

𝑎

(𝜃𝑎𝑖) = 𝜇𝐵
𝑖

𝑏

(𝜃𝑏𝑖) = 1.
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Figure 3: Structure of a fuzzy neural network.

𝜑
𝑇
(𝑥) = [𝜑1(𝑥) 𝜑2(𝑥) ⋅ ⋅ ⋅ 𝜑9(𝑥)] is a fuzzy basic vector

where each element 𝜑𝑖(𝑥), 𝑖 = 1, 2, . . . , 9 is defined as

𝜑𝑖 (𝑥) =

∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥)

∑
9

𝑖=1
(∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

. (17)

In order to exploit the fuzzy inference of a fuzzy logic
system and the learning abilities of a neural network, a
fuzzy logic system is expressed by a neural network which
is known as a fuzzy neural network [26, 27]. By this way,
the parameters in a fuzzy logic system can be found by a
neural network through learning processes. As shown in
Figure 3, the fuzzy neural network has four layers, including
input layer, membership layer, rule layer, and output layer.
There are three nodes in the input layer and each node
is an input representing a state variable. The membership
layer comprises twenty-seven nodes, each of which acts as
a membership function and employs a Gaussian function
to calculate the membership value. The rule layer has nine
nodes, each node stands for an element 𝜑𝑖(𝑥) of the fuzzy
basis vector𝜑(𝑥) andperforms a fuzzy rule.The links between
the rule layer and the output layer are fully connected by
weighting factors 𝜃𝑎1, 𝜃𝑎2, . . . , 𝜃𝑎9 and 𝜃𝑏1, 𝜃𝑏2, . . . , 𝜃𝑏9, which
are the elements of weighting vector 𝜃𝑎 and 𝜃𝑏, respectively.
These factors are considered as parameters and adjusted in
accordance with adaptive laws explained in the next section.
In the output layer, two outputs represent the values of 𝑎(𝑥)
and ̂

𝑏(𝑥).
Therefore, the given fuzzy neural network has a fixed

structure with four layers and nine fuzzy rules, while the
parameter learning is governed by adaptive laws. This simple
structure, as shown in Figure 3, allows the network to expe-
rience the low computational burden. For this reason, the
cost of the system can be reduced and the controller can be
implemented in real-time systems feasibly.

3. Design of Adaptive Sliding Mode Controller

When 𝑎(𝑥) and 𝑏(𝑥) in (7) cannot be determined exactly
due to unknown parameters 𝜎, 𝛾 and uncertainties Δ 𝑖, 𝑖 =

1, 2, 3, the conventional slidingmode controller in (12) cannot
be used. In order to overcome this obstacle, we used a
fuzzy neural network, as shown in Figure 3, to estimate 𝑎(𝑥)
and 𝑏(𝑥) online. Then following the certainty equivalent
approach, the adaptive sliding mode controller 𝑢asd, which
is modified from the conventional controller in (12), can be
obtained as

𝑢asd =

1

̂
𝑏 (𝑥, 𝑡)

(−𝑎 (𝑥, 𝑡) − V (𝑡) − 𝑘𝑆 (𝑡)) , (18)

where 𝑎(𝑥, 𝑡) and̂𝑏(𝑥, 𝑡) are the online estimations of 𝑎(𝑥) and
𝑏(𝑥), respectively, and calculated by a fuzzy neural network as
follows:

𝑎 (𝑥, 𝑡) = 𝜃
𝑇

𝑎
(𝑡) 𝜑 (𝑥) ,

̂
𝑏 (𝑥, 𝑡) = 𝜃

𝑇

𝑏
(𝑡) 𝜑 (𝑥) ,

(19)

where 𝜃
𝑇

𝑎
(𝑡) = [𝜃𝑎1(𝑡) 𝜃𝑎2(𝑡) ⋅ ⋅ ⋅ 𝜃𝑎9(𝑡)] and 𝜃

𝑇

𝑏
(𝑡) =

[𝜃𝑏1(𝑡) 𝜃𝑏2(𝑡) ⋅ ⋅ ⋅ 𝜃𝑏9(𝑡)] are weighting vectors as depicted
in the output layer of the neural network, while 𝜑

𝑇
(𝑥) =

[𝜑1(𝑥) 𝜑2(𝑥) ⋅ ⋅ ⋅ 𝜑9(𝑥)] is the fuzzy basic vector of which
each element 𝜑𝑖(𝑥), 𝑖 = 1, 2, . . . , 9 is mentioned in (17). When
the controller operates, the values of weighting vectors 𝜃𝑇

𝑎
(𝑡)

and 𝜃
𝑇

𝑏
(𝑡) are adjusted, so that 𝑎(𝑥, 𝑡) and ̂

𝑏(𝑥, 𝑡) reach 𝑎(𝑥)

and 𝑏(𝑥), respectively. The adaptive laws for 𝜃𝑇
𝑎
(𝑡) and 𝜃

𝑇

𝑏
(𝑡)

are chosen as follows:

̇
𝜃𝑎 (𝑡) = 𝑊

−1

𝑎
𝜑 (𝑥) 𝑆 (𝑡) ,

̇
𝜃𝑏 (𝑡) = 𝑊

−1

𝑏
𝜑 (𝑥) 𝑆 (𝑡) 𝑢asd,

(20)

where𝑊𝑎 and𝑊𝑏 are positive-definite weighting matrices.
In the adaptive mechanism, once 𝑎(𝑥, 𝑡) and ̂

𝑏(𝑥, 𝑡),
respectively, converge to 𝑎(𝑥) and 𝑏(𝑥), 𝜃𝑎(𝑡) and 𝜃𝑏(𝑡) reach
their optimal values 𝜃

∗

𝑎
and 𝜃

∗

𝑏
, respectively. The achieved

optimal weighting vectors 𝜃∗
𝑎
and 𝜃
∗

𝑏
are defined by

𝜃
∗

𝑎
= arg min
𝜃𝑎∈Θ𝑎

{sup
𝑥∈Ω






𝜃
𝑇

𝑎
(𝑡) 𝜑 (𝑥) − 𝑎 (𝑥)






} ,

𝜃
∗

𝑏
= arg min
𝜃𝑏∈Θ𝑏

{sup
𝑥∈Ω






𝜃
𝑇

𝑏
(𝑡) 𝜑 (𝑥) − 𝑏 (𝑥)






} ,

(21)

where Θ𝑎 and Θ𝑏 are sets of acceptable values of vector 𝜃𝑎(𝑡)
and 𝜃𝑏(𝑡), respectively, andΩ is a compact set of state variable
𝑥.

In the ideal case, 𝑎(𝑥, 𝑡) and ̂𝑏(𝑥, 𝑡), respectively, approach
to 𝑎(𝑥) and 𝑏(𝑥) when 𝜃𝑎(𝑡) and 𝜃𝑏(𝑡) approach to 𝜃

∗

𝑎
and

𝜃
∗

𝑏
, respectively. However, the estimations are carried out

by a neural network which has a finite number of units in
the hidden layer; the estimation errors are unable to avoid,
namely, 𝑎(𝑥, 𝑡) and ̂

𝑏(𝑥, 𝑡) cannot completely converge to
𝑎(𝑥) and 𝑏(𝑥) when 𝜃𝑎(𝑡) and 𝜃𝑏(𝑡) converge to 𝜃

∗

𝑎
and 𝜃

∗

𝑏
,
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respectively. Let 𝛿𝑎(𝑥) and 𝛿𝑏(𝑥) be the estimation errors;
then the exact models of 𝑎(𝑥) and 𝑏(𝑥) can be expressed by:

𝑎 (𝑥) = 𝜃
∗

𝑎
𝜑 (𝑥) + 𝛿𝑎 (𝑥) ,

𝑏 (𝑥) = 𝜃
∗

𝑏
𝜑 (𝑥) + 𝛿𝑏 (𝑥) .

(22)

We suppose that the estimation errors are bounded
according to a following assumption.

Assumption 4. The estimation errors are bounded above by
some known constants 𝛿𝑎 > 0 and 𝛿𝑏 > 0 over the compact
set Ω ⊂ 𝑅

3; that is,

sup
𝑥∈Ω





𝛿𝑎 (𝑥)





≤ 𝛿𝑎,

sup
𝑥∈Ω





𝛿𝑏 (𝑥)





≤ 𝛿𝑏.

(23)

The differences between the estimation models and exact
models can be computed as follows:

𝑎 (𝑥, 𝑡) − 𝑎 (𝑥) = (𝜃𝑎 (𝑡) − 𝜃
∗

𝑎
)
𝑇
𝜑 (𝑥) − 𝛿𝑎 (𝑥)

=
̃
𝜃
𝑇

𝑎
(𝑡) 𝜑 (𝑥) − 𝛿𝑎 (𝑥) ,

̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥) = (𝜃𝑏 (𝑡) − 𝜃

∗

𝑏
)
𝑇
𝜑 (𝑥) − 𝛿𝑏 (𝑥)

=
̃
𝜃
𝑇

𝑏
(𝑡) 𝜑 (𝑥) − 𝛿𝑏 (𝑥) ,

(24)

where ̃
𝜃𝑎(𝑡) = 𝜃𝑎(𝑡) − 𝜃

∗

𝑎
and ̃

𝜃𝑏(𝑡) = 𝜃𝑏(𝑡) − 𝜃
∗

𝑏
are parameter

errors.
Since the estimation errors exist, the stability of closed-

loop system may be lost under only action of the adaptive
sliding mode controller 𝑢asd. In order to repress the undesir-
able effect of estimation errors and keep the system robust,
a compensational controller 𝑢cc is used as an additional con-
troller. This controller is able to compensate the estimation
errors and its formula is given as

𝑢cc = −

1

𝑏

(𝛿𝑎 + 𝛿𝑏





𝑢asd





) sgn (𝑆 (𝑡)) . (25)

Therefore, the whole controller 𝑢 has two components;
the first one is the adaptive sliding mode controller 𝑢asd and
the second one is compensational controller 𝑢cc. The overall
scheme of the controlled system is illustrated in Figure 4 and
the total control signal is given as

𝑢 = 𝑢asd + 𝑢cc =
1

̂
𝑏 (𝑥, 𝑡)

(−𝑎 (𝑥, 𝑡) − V (𝑡) − 𝑘𝑆 (𝑡))

−

1

𝑏

(𝛿𝑎 + 𝛿𝑏





𝑢asd





) sgn (𝑆 (𝑡)) .

(26)

Theorem 5. Consider the system in (3) and the control law
(26) with the adaptive laws (20). Assume that Assumptions
1–4 hold; then under the effect of the controller, chaos in the
PMSM can be suppressed and its speed can track the desired
trajectory successfully and the tracking error converges to zero
asymptotically fast.

Proof. Using (11) and (26), then taking some basic algebraic
manipulations, one can obtain

̇𝑆 (𝑡) = 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢 + V (𝑡)

= 𝑎 (𝑥) + V (𝑡) + 𝑏 (𝑥) (𝑢asd + 𝑢cc)

= 𝑎 (𝑥) + V (𝑡) + ̂
𝑏 (𝑥, 𝑡) 𝑢asd

+ (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢asd + 𝑏 (𝑥) 𝑢cc.

(27)

Replacing 𝑢asd in (27) by its expression in (18), (27) can be
rewritten as

̇𝑆 (𝑡) = 𝑎 (𝑥) + V (𝑡) + ̂
𝑏 (𝑥, 𝑡) 𝑢asd

+ (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢asd + 𝑏 (𝑥) 𝑢cc

= 𝑎 (𝑥) + V (𝑡) + (−𝑎 (𝑥, 𝑡) − V (𝑡) − 𝑘𝑆 (𝑡))

+ (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢asd + 𝑏 (𝑥) 𝑢cc

= − 𝑘𝑆 (𝑡) + (𝑎 (𝑥) − 𝑎 (𝑥, 𝑡))

+ (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢asd + 𝑏 (𝑥) 𝑢cc.

(28)

Substituting (24) into (28) yields

̇𝑆 (𝑡) = − 𝑘𝑆 (𝑡) + (𝑎 (𝑥) − 𝑎 (𝑥, 𝑡))

+ (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢asd + 𝑏 (𝑥) 𝑢cc

= − 𝑘𝑆 (𝑡) − (
̃
𝜃
𝑇

𝑎
(𝑡) 𝜑 (𝑥) − 𝛿𝑎 (𝑥))

− (
̃
𝜃
𝑇

𝑏
(𝑡) 𝜑 (𝑥) − 𝛿𝑏 (𝑥)) 𝑢asd + 𝑏 (𝑥) 𝑢cc.

(29)

Now we consider a Lyapunov function to study the
stability of the system as follows:

𝑉 (𝑡) =

1

2

𝑆
2
(𝑡) +

1

2

̃
𝜃
𝑇

𝑎
(𝑡)𝑊𝑎

̃
𝜃𝑎 (𝑡) +

1

2

̃
𝜃
𝑇

𝑏
(𝑡)𝑊𝑏

̃
𝜃𝑏 (𝑡) .

(30)

Taking the time derivative of 𝑉(𝑡) and noticing that ̇
̃
𝜃𝑎 =

̇
𝜃𝑎,

̇
̃
𝜃𝑏 =

̇
𝜃𝑏, one can get

�̇� (𝑡) = 𝑆 (𝑡) ̇𝑆 (𝑡) +

1

2

̇
̃
𝜃

𝑇

𝑎
(𝑡)𝑊𝑎

̃
𝜃𝑎 (𝑡) +

1

2

̃
𝜃
𝑇

𝑎
(𝑡)𝑊𝑎

̇
̃
𝜃𝑎 (𝑡)

+

1

2

̇
̃
𝜃

𝑇

𝑏
(𝑡)𝑊𝑏

̃
𝜃𝑏 (𝑡) +

1

2

̃
𝜃
𝑇

𝑏
(𝑡)𝑊𝑏

̇
̃
𝜃𝑏 (𝑡)

= 𝑆 (𝑡) ̇𝑆 (𝑡) +
̃
𝜃
𝑇

𝑎
(𝑡)𝑊𝑎

̇
𝜃𝑎 (𝑡) +

̃
𝜃
𝑇

𝑏
(𝑡)𝑊𝑏

̇
𝜃𝑏 (𝑡) .

(31)
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Figure 4: Overall scheme of controlled system.

Substituting (29) into (31), �̇�(𝑡) can be rewritten as

�̇� (𝑡) = 𝑆 (𝑡) ̇𝑆 (𝑡) +
̃
𝜃
𝑇

𝑎
(𝑡)𝑊𝑎

̇
𝜃𝑎 (𝑡) +

̃
𝜃
𝑇

𝑏
(𝑡)𝑊𝑏

̇
𝜃𝑏 (𝑡)

= − 𝑘𝑆
2
(𝑡) − (

̃
𝜃
𝑇

𝑎
(𝑡) 𝜑 (𝑥) − 𝛿𝑎 (𝑥)) 𝑆 (𝑡)

− (
̃
𝜃
𝑇

𝑏
(𝑡) 𝜑 (𝑥) − 𝛿𝑏 (𝑥)) 𝑆 (𝑡) 𝑢asd

+ 𝑏 (𝑥) 𝑆 (𝑡) 𝑢cc +
̃
𝜃
𝑇

𝑎
(𝑡)𝑊𝑎

̇
𝜃𝑎 (𝑡) +

̃
𝜃
𝑇

𝑏
(𝑡)𝑊𝑏

̇
𝜃𝑏 (𝑡)

= − 𝑘𝑆
2
(𝑡) +

̃
𝜃
𝑇

𝑎
(𝑡) (𝑊𝑎

̇
𝜃𝑎 (𝑡) − 𝜑 (𝑥) 𝑆 (𝑡))

+
̃
𝜃
𝑇

𝑏
(𝑡) (𝑊𝑏

̇
𝜃𝑏 (𝑡) − 𝜑 (𝑥) 𝑆 (𝑡) 𝑢asd)

+ 𝑏 (𝑥) 𝑆 (𝑡) 𝑢cc + 𝑆 (𝑡) 𝛿𝑎 (𝑥) + 𝑆 (𝑡) 𝛿𝑏 (𝑥) 𝑢asd.

(32)

Replacing ̇
𝜃𝑎(𝑡) and ̇

𝜃𝑏(𝑡) in (32) by their expression in
adaptive laws (20) and (32) can be rewritten as

�̇� (𝑡) = − 𝑘𝑆
2
(𝑡) + 𝑏 (𝑥) 𝑆 (𝑡) 𝑢cc + 𝑆 (𝑡) 𝛿𝑎 (𝑥)

+ 𝑆 (𝑡) 𝛿𝑏 (𝑥) 𝑢asd

≤ − 𝑘𝑆
2
(𝑡) + 𝑏 (𝑥) 𝑆 (𝑡) 𝑢cc

+ |𝑆 (𝑡)| (




𝛿𝑎 (𝑥)





+




𝛿𝑏 (𝑥)










𝑢asd





)

≤ − 𝑘𝑆
2
(𝑡) + 𝑏 (𝑥) 𝑆 (𝑡) 𝑢cc + |𝑆 (𝑡)| (𝛿𝑎 + 𝛿𝑏





𝑢asd





) .

(33)

Substituting the compensational controller in (25) into
(33) and noticing that sgn(𝑆(𝑡))𝑆(𝑡) = |𝑆(𝑡)|, one can obtain

�̇� (𝑡) ≤ − 𝑘𝑆
2
(𝑡) −

𝑏 (𝑥)

𝑏

(𝛿𝑎 + 𝛿𝑏





𝑢asd





) sgn (𝑆 (𝑡)) 𝑆 (𝑡)

+ |𝑆 (𝑡)| (𝛿𝑎 + 𝛿𝑏





𝑢asd





)

≤ − 𝑘𝑆
2
(𝑡) − (

𝑏 (𝑥)

𝑏

− 1) (𝛿𝑎 + 𝛿𝑏





𝑢asd





) |𝑆 (𝑡)| ≤ 0.

(34)

From (30) and (34), we can find that 𝑉(𝑡) > 0 and
�̇�(𝑡) ≤ 0. For these reasons, the close-loop controlled system
is stable. Also, 𝑆(𝑡) ∈ 𝐿∞, ‖̃𝜃𝑎(𝑡)‖ ∈ 𝐿∞, and ‖

̃
𝜃𝑏(𝑡)‖ ∈ 𝐿∞

can be determined.
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Figure 5: Chaotic oscillations of an uncontrolled PMSM.
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Figure 6: Chaos suppression under the controller action.

Further, from the inequality in (34), we have the following
result:

∫

∞

0

𝑘𝑆
2
(𝑡) 𝑑𝑡 ≤ −∫

∞

0

�̇� (𝑡) 𝑑𝑡 = 𝑉 (0) − 𝑉 (∞) < ∞.

(35)

The inequality in (35) implies that 𝑆(𝑡) ∈ 𝐿2, leading
to 𝑆(𝑡) ∈ 𝐿2 ∩ 𝐿∞. On the other hand, because of (8), we
can obtain 𝑒(𝑡) ∈ 𝐿∞, ̇𝑒(𝑡) ∈ 𝐿∞, and ̇𝑆(𝑡) ∈ 𝐿∞. Then,
incorporating Barbalat’s lemma [28] yields lim𝑡→∞𝑆(𝑡) = 0,
so lim𝑡→∞𝑒(𝑡) = 0. Therefore, the system stability is ensured
and the perfect tracking performance is achieved. This proof
is finished.

4. Simulation Study

Here numerical simulations are carried out to verify the
validity of the proposed method. The system parameters

and initial conditions are kept the same as above; namely,
𝜎 = 5.45, 𝛾 = 20, and [𝑥1(0), 𝑥2(0), 𝑥3(0)] = [2, 1, 3] are
maintained.

First, the uncontrolled system is considered.The behavior
of the systemwithout the action of the controller is simulated
over 100 seconds. As a result shown in Figure 5, all state
variables experience chaotic oscillations separately. Then, for
examining the ability of chaos suppression, we set the desired
value 𝑦𝑑(𝑡) = 1 and let the controller be operated since the
beginning time. As displayed in Figure 6, the incipient chaos
is quickly suppressed when the controller is active at the first
of period time, and all state variables converge to constant
values asymptotically fast.

Second, the proposed controller is employed to repress
chaos and track the desired speed in a PMSM.The simulation
is implemented with the presence of uncertainties and per-
turbation of system parameters. The simulation time is 40 s
and the controller is turned on at time 𝑡 = 10 s. The system
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Figure 7: Speed tracking of the chaotic PMSM when the controller is turned on at time 𝑡 = 10 s.
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Figure 8: Sliding surface and control signal when the controller is active.

parameters are chosen in such a way that they can vary within
the chaotic region [5]. One can choose 𝜎 = 5.45 + 0.1 sin(𝑥1)
and 𝛾 = 20 + cos(𝑥3) to meet the requirement for chaotic
region. On the other hand, for satisfying Assumptions 1 and
2, the uncertainties can be chosen as Δ 1 = 1 + cos(𝑥1 + 𝑥3),
Δ 2 = 1, and Δ 3 = sin(𝑥2). The desired trajectory 𝑦𝑑(𝑡) =

2 sin((𝜋/5)𝑡), which satisfies Assumption 3, is assigned for
this simulation, while the control parameters are specified as
follows:

𝜆 = 587.9, 𝑘 = 7048.6, 𝑏 = 1, 𝛿𝑎 = 𝛿𝑏 = 0.01,

𝑊𝑎 = 3368 ∗ eye (9) , 𝑊𝑏 = 9569.7 ∗ eye (9) .
(36)

The results, as depicted in Figures 7–9, demonstrate that
the chaotic oscillations are completely suppressed and the
speed of PMSMperfectly follows the desired trajectory, while
the tracking error asymptotically converges to zero when
the controller is turned on at time 𝑡 = 10 s. As displayed
in Figure 7(a), the tracking performance is illustrated over
the simulation time. The response 𝑦(𝑡), which is denoted by
a solid line, nearly overlaps the desired trajectory 𝑦𝑑(𝑡) =

2 sin((𝜋/5)𝑡), which is represented by a dotted line, after
the 10th second. Also, the tracking error is described in
Figure 7(b), where the tracking error converges to zero

asymptotically fast when the controller is turned on at time
𝑡 = 10 s. In Figure 8, the sliding surface 𝑆(𝑡) and controller
force 𝑢(𝑡) are shown in the period of the 10th second to the
20th second. After the controller starts, the value of switching
surface converges to zero speedily. It is also noticeable that
the chattering phenomenon, which is usually considered as
a drawback of conventional sliding model control, does not
appear in our design. On the other hand, the responses of all
state variables are expressed in Figure 9 and they demonstrate
that the chaotic motion in PMSM is suppressed quickly when
the controller runs.

5. Conclusion

Based on fuzzy neural networks, the adaptive sliding mode
control scheme cannot only completely suppress chaos but
also successfully track the desired speed in an uncertain
chaotic permanent magnet synchronous motor. By choos-
ing the appropriate controller parameters, chattering phe-
nomenon can be avoided instead of compromise in con-
ventional sliding mode control. In addition, because the
adaptive laws are derived fromLyapunov function, the system
stability is guaranteed and perfect tracking performance is
ensured even if the uncertainties affect the system. Numerical



10 Mathematical Problems in Engineering

0 5 10 15 20 25 30 35 40
−10

0

10

x
1

Desired trajectory (yd)

t (s)

(a)

0 5 10 15 20 25 30 35 40

−10

0

10

20

x
2

t (s)

(b)

0 5 10 15 20 25 30 35 40

0
10
20
30

x
3

t (s)

(c)

Figure 9: State responses of the chaotic PMSM when the controller is turned on at time 𝑡 = 10 s.

simulations were realized to demonstrate the effectiveness
and robustness of the proposed method.
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