58,412 research outputs found

    Search in Power-Law Networks

    Full text link
    Many communication and social networks have power-law link distributions, containing a few nodes which have a very high degree and many with low degree. The high connectivity nodes play the important role of hubs in communication and networking, a fact which can be exploited when designing efficient search algorithms. We introduce a number of local search strategies which utilize high degree nodes in power-law graphs and which have costs which scale sub-linearly with the size of the graph. We also demonstrate the utility of these strategies on the Gnutella peer-to-peer network.Comment: 17 pages, 14 figure

    On the Stability of Community Detection Algorithms on Longitudinal Citation Data

    Full text link
    There are fundamental differences between citation networks and other classes of graphs. In particular, given that citation networks are directed and acyclic, methods developed primarily for use with undirected social network data may face obstacles. This is particularly true for the dynamic development of community structure in citation networks. Namely, it is neither clear when it is appropriate to employ existing community detection approaches nor is it clear how to choose among existing approaches. Using simulated data, we attempt to clarify the conditions under which one should use existing methods and which of these algorithms is appropriate in a given context. We hope this paper will serve as both a useful guidepost and an encouragement to those interested in the development of more targeted approaches for use with longitudinal citation data.Comment: 17 pages, 7 figures, presenting at Applications of Social Network Analysis 2009, ETH Zurich Edit, August 17, 2009: updated abstract, figures, text clarification

    ES Is More Than Just a Traditional Finite-Difference Approximator

    Full text link
    An evolution strategy (ES) variant based on a simplification of a natural evolution strategy recently attracted attention because it performs surprisingly well in challenging deep reinforcement learning domains. It searches for neural network parameters by generating perturbations to the current set of parameters, checking their performance, and moving in the aggregate direction of higher reward. Because it resembles a traditional finite-difference approximation of the reward gradient, it can naturally be confused with one. However, this ES optimizes for a different gradient than just reward: It optimizes for the average reward of the entire population, thereby seeking parameters that are robust to perturbation. This difference can channel ES into distinct areas of the search space relative to gradient descent, and also consequently to networks with distinct properties. This unique robustness-seeking property, and its consequences for optimization, are demonstrated in several domains. They include humanoid locomotion, where networks from policy gradient-based reinforcement learning are significantly less robust to parameter perturbation than ES-based policies solving the same task. While the implications of such robustness and robustness-seeking remain open to further study, this work's main contribution is to highlight such differences and their potential importance

    Ordered community structure in networks

    Full text link
    Community structure in networks is often a consequence of homophily, or assortative mixing, based on some attribute of the vertices. For example, researchers may be grouped into communities corresponding to their research topic. This is possible if vertex attributes have discrete values, but many networks exhibit assortative mixing by some continuous-valued attribute, such as age or geographical location. In such cases, no discrete communities can be identified. We consider how the notion of community structure can be generalized to networks that are based on continuous-valued attributes: in general, a network may contain discrete communities which are ordered according to their attribute values. We propose a method of generating synthetic ordered networks and investigate the effect of ordered community structure on the spread of infectious diseases. We also show that community detection algorithms fail to recover community structure in ordered networks, and evaluate an alternative method using a layout algorithm to recover the ordering.Comment: This is an extended preprint version that includes an extra example: the college football network as an ordered (spatial) network. Further improvements, not included here, appear in the journal version. Original title changed (from "Ordered and continuous community structure in networks") to match journal versio
    • …
    corecore