1,910 research outputs found

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding ÎŁ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018

    The longest path problem is polynomial on interval graphs.

    Get PDF
    The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach

    3nj Morphogenesis and Semiclassical Disentangling

    Full text link
    Recoupling coefficients (3nj symbols) are unitary transformations between binary coupled eigenstates of N=(n+1) mutually commuting SU(2) angular momentum operators. They have been used in a variety of applications in spectroscopy, quantum chemistry and nuclear physics and quite recently also in quantum gravity and quantum computing. These coefficients, naturally associated to cubic Yutsis graphs, share a number of intriguing combinatorial, algebraic, and analytical features that make them fashinating objects to be studied on their own. In this paper we develop a bottom--up, systematic procedure for the generation of 3nj from 3(n-1)j diagrams by resorting to diagrammatical and algebraic methods. We provide also a novel approach to the problem of classifying various regimes of semiclassical expansions of 3nj coefficients (asymptotic disentangling of 3nj diagrams) for n > 2 by means of combinatorial, analytical and numerical tools

    Space-Time Circuit-to-Hamiltonian Construction and Its Applications

    Full text link
    The circuit-to-Hamiltonian construction translates dynamics (a quantum circuit and its output) into statics (the groundstate of a circuit Hamiltonian) by explicitly defining a quantum register for a clock. The standard Feynman-Kitaev construction uses one global clock for all qubits while we consider a different construction in which a clock is assigned to each interacting qubit. This makes it possible to capture the spatio-temporal structure of the original quantum circuit into features of the circuit Hamiltonian. The construction is inspired by the original two-dimensional interacting fermionic model (see http://link.aps.org/doi/10.1103/PhysRevA.63.040302) We prove that for one-dimensional quantum circuits the gap of the circuit Hamiltonian is appropriately lower-bounded, partially using results on mixing times of Markov chains, so that the applications of this construction for QMA (and partially for quantum adiabatic computation) go through. For one-dimensional quantum circuits, the dynamics generated by the circuit Hamiltonian corresponds to diffusion of a string around the torus.Comment: 27 pages, 5 figure
    • …
    corecore