235,967 research outputs found

    GMNN: Graph Markov Neural Networks

    Full text link
    This paper studies semi-supervised object classification in relational data, which is a fundamental problem in relational data modeling. The problem has been extensively studied in the literature of both statistical relational learning (e.g. relational Markov networks) and graph neural networks (e.g. graph convolutional networks). Statistical relational learning methods can effectively model the dependency of object labels through conditional random fields for collective classification, whereas graph neural networks learn effective object representations for classification through end-to-end training. In this paper, we propose the Graph Markov Neural Network (GMNN) that combines the advantages of both worlds. A GMNN models the joint distribution of object labels with a conditional random field, which can be effectively trained with the variational EM algorithm. In the E-step, one graph neural network learns effective object representations for approximating the posterior distributions of object labels. In the M-step, another graph neural network is used to model the local label dependency. Experiments on object classification, link classification, and unsupervised node representation learning show that GMNN achieves state-of-the-art results.Comment: icml 201

    Heterogeneous Graph Attention Network

    Full text link
    Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its metapath based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.Comment: 10 page

    Multivariate Time Series Forecasting with Transfer Entropy Graph

    Full text link
    Multivariate time series (MTS) forecasting is an essential problem in many fields. Accurate forecasting results can effectively help decision-making. To date, many MTS forecasting methods have been proposed and widely applied. However, these methods assume that the predicted value of a single variable is affected by all other variables, which ignores the causal relationship among variables. To address the above issue, we propose a novel end-to-end deep learning model, termed graph neural network with Neural Granger Causality (CauGNN) in this paper. To characterize the causal information among variables, we introduce the Neural Granger Causality graph in our model. Each variable is regarded as a graph node, and each edge represents the casual relationship between variables. In addition, convolutional neural network (CNN) filters with different perception scales are used for time series feature extraction, which is used to generate the feature of each node. Finally, Graph Neural Network (GNN) is adopted to tackle the forecasting problem of graph structure generated by MTS. Three benchmark datasets from the real world are used to evaluate the proposed CauGNN. The comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task

    Streaming Graph Neural Networks

    Full text link
    Graphs are essential representations of many real-world data such as social networks. Recent years have witnessed the increasing efforts made to extend the neural network models to graph-structured data. These methods, which are usually known as the graph neural networks, have been applied to advance many graphs related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytic tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges (interactions), the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework

    Fisher-Bures Adversary Graph Convolutional Networks

    Full text link
    In a graph convolutional network, we assume that the graph GG is generated wrt some observation noise. During learning, we make small random perturbations ΔG\Delta{}G of the graph and try to improve generalization. Based on quantum information geometry, ΔG\Delta{}G can be characterized by the eigendecomposition of the graph Laplacian matrix. We try to minimize the loss wrt the perturbed G+ΔGG+\Delta{G} while making ΔG\Delta{G} to be effective in terms of the Fisher information of the neural network. Our proposed model can consistently improve graph convolutional networks on semi-supervised node classification tasks with reasonable computational overhead. We present three different geometries on the manifold of graphs: the intrinsic geometry measures the information theoretic dynamics of a graph; the extrinsic geometry characterizes how such dynamics can affect externally a graph neural network; the embedding geometry is for measuring node embeddings. These new analytical tools are useful in developing a good understanding of graph neural networks and fostering new techniques.Comment: Published in UAI 201

    Machine Learning on Graphs: A Model and Comprehensive Taxonomy

    Full text link
    There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area

    SimGNN: A Neural Network Approach to Fast Graph Similarity Computation

    Full text link
    Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into a vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to supplement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. To the best of our knowledge, we are among the first to adopt neural networks to explicitly model the similarity between two graphs, and provide a new direction for future research on graph similarity computation and graph similarity search.Comment: WSDM 201

    DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model

    Full text link
    Convolutional neural networks (CNNs) can be applied to graph similarity matching, in which case they are called graph CNNs. Graph CNNs are attracting increasing attention due to their effectiveness and efficiency. However, the existing convolution approaches focus only on regular data forms and require the transfer of the graph or key node neighborhoods of the graph into the same fixed form. During this transfer process, structural information of the graph can be lost, and some redundant information can be incorporated. To overcome this problem, we propose the disordered graph convolutional neural network (DGCNN) based on the mixed Gaussian model, which extends the CNN by adding a preprocessing layer called the disordered graph convolutional layer (DGCL). The DGCL uses a mixed Gaussian function to realize the mapping between the convolution kernel and the nodes in the neighborhood of the graph. The output of the DGCL is the input of the CNN. We further implement a backward-propagation optimization process of the convolutional layer by which we incorporate the feature-learning model of the irregular node neighborhood structure into the network. Thereafter, the optimization of the convolution kernel becomes part of the neural network learning process. The DGCNN can accept arbitrary scaled and disordered neighborhood graph structures as the receptive fields of CNNs, which reduces information loss during graph transformation. Finally, we perform experiments on multiple standard graph datasets. The results show that the proposed method outperforms the state-of-the-art methods in graph classification and retrieval.Comment: 16 pages,8 figure

    edGNN: a Simple and Powerful GNN for Directed Labeled Graphs

    Full text link
    The ability of a graph neural network (GNN) to leverage both the graph topology and graph labels is fundamental to building discriminative node and graph embeddings. Building on previous work, we theoretically show that edGNN, our model for directed labeled graphs, is as powerful as the Weisfeiler-Lehman algorithm for graph isomorphism. Our experiments support our theoretical findings, confirming that graph neural networks can be used effectively for inference problems on directed graphs with both node and edge labels. Code available at https://github.com/guillaumejaume/edGNN.Comment: Representation Learning on Graphs and Manifolds @ ICLR1

    Typed Graph Networks

    Full text link
    Recently, the deep learning community has given growing attention to neural architectures engineered to learn problems in relational domains. Convolutional Neural Networks employ parameter sharing over the image domain, tying the weights of neural connections on a grid topology and thus enforcing the learning of a number of convolutional kernels. By instantiating trainable neural modules and assembling them in varied configurations (apart from grids), one can enforce parameter sharing over graphs, yielding models which can effectively be fed with relational data. In this context, vertices in a graph can be projected into a hyperdimensional real space and iteratively refined over many message-passing iterations in an end-to-end differentiable architecture. Architectures of this family have been referred to with several definitions in the literature, such as Graph Neural Networks, Message-passing Neural Networks, Relational Networks and Graph Networks. In this paper, we revisit the original Graph Neural Network model and show that it generalises many of the recent models, which in turn benefit from the insight of thinking about vertex \textbf{types}. To illustrate the generality of the original model, we present a Graph Neural Network formalisation, which partitions the vertices of a graph into a number of types. Each type represents an entity in the ontology of the problem one wants to learn. This allows - for instance - one to assign embeddings to edges, hyperedges, and any number of global attributes of the graph. As a companion to this paper we provide a Python/Tensorflow library to facilitate the development of such architectures, with which we instantiate the formalisation to reproduce a number of models proposed in the current literature.Comment: Under submissio
    • …
    corecore