1,214 research outputs found

    Relational Parametricity and Control

    Full text link
    We study the equational theory of Parigot's second-order λμ-calculus in connection with a call-by-name continuation-passing style (CPS) translation into a fragment of the second-order λ-calculus. It is observed that the relational parametricity on the target calculus induces a natural notion of equivalence on the λμ-terms. On the other hand, the unconstrained relational parametricity on the λμ-calculus turns out to be inconsistent with this CPS semantics. Following these facts, we propose to formulate the relational parametricity on the λμ-calculus in a constrained way, which might be called ``focal parametricity''.Comment: 22 pages, for Logical Methods in Computer Scienc

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    Call-by-name, call-by-value, call-by-need and the linear lambda calculus

    Get PDF
    this paper is a minor refinement of one previously presented by Wadler [41,42], which is based on Girard's successor to linear logic, the Logic of Unity [15]. A similar calculus has been devised by Plotkin and Barber [6]. In many presentations of logic a key role is played by the structural rules: contraction provides the only way to duplicate an assumption, while weakening provides the only way to discard one. In linear logic [14], the presence of contraction or weakening is revealed in a formula by the presence of the `of course' connective, written `!'. The Logic of Unity [15] takes this separation one step further by distinguishing linear assumptions, which one cannot contract or weaken, from nonlinear or intuitionistic assumptions, which one can. Corresponding to Girard's first translation we define a mapping ffi from the call-byname to the linear calculus and show that this mapping is sound, in that M \Gamma\Gamma\Gamma\Gamma

    Collection analysis for Horn clause programs

    Get PDF
    We consider approximating data structures with collections of the items that they contain. For examples, lists, binary trees, tuples, etc, can be approximated by sets or multisets of the items within them. Such approximations can be used to provide partial correctness properties of logic programs. For example, one might wish to specify than whenever the atom sort(t,s)sort(t,s) is proved then the two lists tt and ss contain the same multiset of items (that is, ss is a permutation of tt). If sorting removes duplicates, then one would like to infer that the sets of items underlying tt and ss are the same. Such results could be useful to have if they can be determined statically and automatically. We present a scheme by which such collection analysis can be structured and automated. Central to this scheme is the use of linear logic as a omputational logic underlying the logic of Horn clauses

    Classical logic, continuation semantics and abstract machines

    Get PDF
    One of the goals of this paper is to demonstrate that denotational semantics is useful for operational issues like implementation of functional languages by abstract machines. This is exemplified in a tutorial way by studying the case of extensional untyped call-by-name λ-calculus with Felleisen's control operator 𝒞. We derive the transition rules for an abstract machine from a continuation semantics which appears as a generalization of the ¬¬-translation known from logic. The resulting abstract machine appears as an extension of Krivine's machine implementing head reduction. Though the result, namely Krivine's machine, is well known our method of deriving it from continuation semantics is new and applicable to other languages (as e.g. call-by-value variants). Further new results are that Scott's D∞-models are all instances of continuation models. Moreover, we extend our continuation semantics to Parigot's λμ-calculus from which we derive an extension of Krivine's machine for λμ-calculus. The relation between continuation semantics and the abstract machines is made precise by proving computational adequacy results employing an elegant method introduced by Pitts

    Call-by-name, Call-by-value, Call-by-need, and the Linear Lambda Calculus

    Get PDF
    Girard described two translations of intuitionistic logic into linear logic, one where A -> B maps to (!A) -o B, and another where it maps to !(A -o B). We detail the action of these translations on terms, and show that the first corresponds to a call-by-name calculus, while the second corresponds to call-by-value. We further show that if the target of the translation is taken to be an affine calculus, where ! controls contraction but weakening is allowed everywhere, then the second translation corresponds to a call-by-need calculus, as recently defined by Ariola, Felleisen, Maraist, Odersky, and Wadler. Thus the different calling mechanisms can be explained in terms of logical translations, bringing them into the scope of the Curry-Howard isomorphism
    • …
    corecore