12 research outputs found

    The Generalized Dirichlet to Neumann map for the KdV equation on the half-line

    Full text link
    For the two versions of the KdV equation on the positive half-line an initial-boundary value problem is well posed if one prescribes an initial condition plus either one boundary condition if qtq_{t} and qxxxq_{xxx} have the same sign (KdVI) or two boundary conditions if qtq_{t} and qxxxq_{xxx} have opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map for the above problems means characterizing the unknown boundary values in terms of the given initial and boundary conditions. For example, if {q(x,0),q(0,t)}\{q(x,0),q(0,t) \} and {q(x,0),q(0,t),qx(0,t)}\{q(x,0),q(0,t),q_{x}(0,t) \} are given for the KdVI and KdVII equations, respectively, then one must construct the unknown boundary values {qx(0,t),qxx(0,t)}\{q_{x}(0,t),q_{xx}(0,t) \} and {qxx(0,t)}\{q_{xx}(0,t) \}, respectively. We show that this can be achieved without solving for q(x,t)q(x,t) by analysing a certain ``global relation'' which couples the given initial and boundary conditions with the unknown boundary values, as well as with the function Φ(t)(t,k)\Phi^{(t)}(t,k), where Φ(t)\Phi^{(t)} satisifies the tt-part of the associated Lax pair evaluated at x=0x=0. Indeed, by employing a Gelfand--Levitan--Marchenko triangular representation for Φ(t)\Phi^{(t)}, the global relation can be solved \emph{explicitly} for the unknown boundary values in terms of the given initial and boundary conditions and the function Φ(t)\Phi^{(t)}. This yields the unknown boundary values in terms of a nonlinear Volterra integral equation.Comment: 21 pages, 3 figure

    The solution of the global relation for the derivative nonlinear Schr\"odinger equation on the half-line

    Full text link
    We consider initial-boundary value problems for the derivative nonlinear Schr\"odinger (DNLS) equation on the half-line x>0x > 0. In a previous work, we showed that the solution q(x,t)q(x,t) can be expressed in terms of the solution of a Riemann-Hilbert problem with jump condition specified by the initial and boundary values of q(x,t)q(x,t). However, for a well-posed problem, only part of the boundary values can be prescribed; the remaining boundary data cannot be independently specified, but are determined by the so-called global relation. In general, an effective solution of the problem therefore requires solving the global relation. Here, we present the solution of the global relation in terms of the solution of a system of nonlinear integral equations. This also provides a construction of the Dirichlet-to-Neumann map for the DNLS equation on the half-line.Comment: 20 pages, 2 figures, minor corrections mad

    The Unified Method: I Non-Linearizable Problems on the Half-Line

    Full text link
    Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex kk-plane (the Fourier plane), which has a jump matrix with explicit (x,t)(x,t)-dependence involving four scalar functions of kk, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large kk asymptotics of the eigenfunctions defining the relevant spectral functions.Comment: 39 page

    The Unified Method: II NLS on the Half-Line with tt-Periodic Boundary Conditions

    Full text link
    Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex kk-plane (the Fourier plane), which has a jump matrix with explicit (x,t)(x,t)-dependence involving four scalar functions of kk, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we first present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation and on the introduction of the so-called Gelfand-Levitan-Marchenko representations of the eigenfunctions defining the spectral functions. We then concentrate on the physically significant case of tt-periodic Dirichlet boundary data. After presenting certain heuristic arguments which suggest that the Neumann boundary values become periodic as t→∞t\to\infty, we show that for the case of the NLS with a sine-wave as Dirichlet data, the asymptotics of the Neumann boundary values can be computed explicitly at least up to third order in a perturbative expansion and indeed at least up to this order are asymptotically periodic.Comment: 29 page
    corecore