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Abstract

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper
half plane. We express the solution q(x, y) in terms of a Riemann-Hilbert problem whose
jump matrix is uniquely defined by a certain function b(λ), λ ∈ R, explicitly expressed in
terms of the given Dirichlet data g0(x) = q(x, 0) and the unknown Neumann boundary
value g1(x) = qy(x, 0), where g0(x) and g1(x) are related via the global relation {b(λ) =
0, λ ≥ 0}. Furthermore, we show that the latter relation can be used to characterise
the Dirichlet to Neumann map, i.e. to express g1(x) in terms of g0(x). It appears that
this provides the first case that such a map is explicitly characterised for a nonlinear
integrable elliptic PDE, as opposed to an evolution PDE.

1 Introduction

A new method for analysing boundary value problems, extending ideas of the so-called
inverse scattering transform method, was introduced in [17], see also [18, 23]. This method
has already been applied to linear evolution PDEs on the half-line and on the finite interval
[8, 12, 14, 24, 29, 46, 47, 48], to integrable nonlinear evolution PDEs on the half-line and on
the finite interval [4, 5, 20, 22, 28, 35, 37, 39, 40, 41, 42], to linear and integrable nonlinear
evolution PDEs in two space variables [36, 44], to linear elliptic PDEs in the interior of a
convex polygon [1, 2, 7, 9, 10, 11, 13, 32, 38, 53, 54] and to the two prototypical integrable
nonlinear elliptic PDEs in two dimensions, namely the elliptic sine-Gordon [45, 49] and the
Ernst equation [43].
The new method has the following advantages: (a) For linear PDEs, it yields an explicit
integral representation involving appropriate transforms of boundary values. Similarly, for
integrable nonlinear PDEs in two or three dimensions, it expresses the solution in terms of
either a Riemann-Hilbert or a d-bar problem; these problems are uniquely defined in terms
of appropriate nonlinear transforms of boundary values, called spectral functions. These
functions are defined in the Fourier space, i.e. they do not involve the independent variables
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of the PDE. This crucial feature of the new method makes it possible to obtain useful
asymptotic information about the solution even before characterising the spectral functions
in terms of the given boundary conditions [27].
(b) For a large class of linear boundary value problems, it is possible to eliminate the trans-
forms of the unknown boundary values and to obtain an effective integral representation
defined only in terms of the given boundary conditions [23]. This is achieved by analysing
a certain equation, called the global relation, which couples the transforms of all relevant
boundary values. Similarly, for certain nonlinear boundary value problems, called linearis-
able [20, 22], it is possible, by analysing the global relation, to express the spectral functions
in terms of the given boundary conditions. Thus, for linearisable boundary conditions, the
new method yields a representation which is as effective as the classical representation for
the Cauchy problem obtained by the inverse scattering transform method.
(c) For general linear boundary value problems, the global relation provides a novel approach
for characterising the unknown boundary values in terms of the given boundary conditions,
i.e. for characterising the generalised Dirichlet to Neumann map. Novel numerical tech-
niques for computing this map are presented in [16, 31, 33, 50, 52]. Similarly, for integrable
nonlinear evolution PDEs, the global relation yields an effective characterisation of the gen-
eralised Dirichlet to Neumann map. This important development was first achieved in [6]
by employing the so-called Gelfand-Levitan-Marchenko (GLM) representation, and was im-
plemented numerically in [56]. It was later realised that this approach also provides a direct
characterisation of the spectral functions in terms of the given boundary conditions, avoid-
ing the GLM representation [21, 55]. However, it must be noted that for non-linearisable
boundary value problems, the above characterisation involves a nonlinear equation.

In this paper we implement step (c) above for the elliptic sine-Gordon equation formulated
in the half plane. To our knowledge, this is the first instance that the Dirichlet to Neumann
map is characterised for an integrable elliptic (as opposed to evolution) PDE. Actually,
although the relevant characterisation shares conceptual similarities with the method used
for evolution PDEs, it does involve novel elements. In particular, while for evolution PDEs
it suffices to analyse a single eigenfunction, in the case of the elliptic sine Gordon equation
formulated in the upper half plane it is necessary to analyse two different eigenfunctions and
to combine the resulting expressions.
The sine Gordon equation posed in the upper half plane was considered in [49], but the
Dirichlet to Neumann map (Theorem 5.1) was not derived. Furthermore, Theorem 3.1,
which proves that a formula based on the solution of a certain Riemann-Hilbert problem
solves the given problem provided that the global relation, namely {b(λ) = 0, λ ≥ 0}, is
valid, was not derived in [49].

2 Preliminaries

The elliptic sine-Gordon
qxx + qyy = sin q, x, y ∈ R, (2.1)

is the compatibility condition of the following Lax pair:

Ψx(x, y, λ) + ω(λ)[σ3,Ψ](x, y, λ) = Q(x, y, λ)Ψ(x, y, λ), (2.2)

Ψy(x, y, λ) + Ω(λ)[σ3,Ψ](x, y, λ) = iQ(x, y,−λ)Ψ(x, y, λ), (2.3)
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where λ ∈ C and

σ3 = diag(1,−1), ω(λ) =
1

4i

(
λ −

1

λ

)
, Ω(λ) =

1

4

(
λ +

1

λ

)
, (2.4)

Q(x, y, λ) =
1

4

(
i
λ (1 − cos q(x, y)) − 1

λ sin q(x, y) + iqx(x, y) + qy(x, y)
1
λ sin q(x, y) + iqx(x, y) + qy(x, y) i

λ (cos q(x, y) − 1)

)
.

(2.5)
Equations (2.2 and 2.3) can be written in the form

d
[
e(ω(λ)x+Ω(λ)y)σ̂3Ψ(x, y, λ)

]
= e(ω(λ)x+Ω(λ)y)σ̂3W (x, y, λ), (2.6)

where the differential form W is given by

W (x, y, λ) = (Q(x, y, λ)dx + iQ(x, y,−λ)dy) Ψ(x, y, λ) (2.7)

and the action of σ̂3 on a matrix A is defined by

σ̂3A = [σ3, A],

hence

eσ̂3xA = eσ3xAe−σ3x =

(
A11 e2xA12

e−2xA21 A22

)
.

The definitions of Ω(λ) and ω(λ) yield

Re(ω(λ)) > 0, for Imλ > 0; Re(Ω(λ)) > 0, for Reλ > 0. (2.8)

Equation (2.6) implies that if Q(x, y) is a solution of equation (2.1) in a given simply
connected domain D, then the following equation characterises a function Ψj(x, y, λ) which
solves both equations (2.2) and (2.3):

Ψj(x, y, λ) = I +

∫ (x,y)

(xj ,yj)

e−(ω(λ)(x−ξ)+Ω(λ)(y−η))σ̂3Wj(ξ, η, λ), (x, y), (xj , yj) ∈ D, (2.9)

where (xj , yj) is a fixed point in D and Wj is the differential form defined by (2.7) with Ψ
replaced by Ψj and (x, y) replaced by (ξ, η). It is shown in [19] that if D is the interior of a
convex polygon, then the proper choice for (xj , yj) is the collection of all the vertices of the
polygon.

3 The elliptic sine-Gordon equation on the half plane

We consider equation (2.1) posed in the upper half plane, i.e. in the domain {−∞ < x <
∞, 0 < y < ∞}. We first review the results of [49].
In this case, the simply connected domain D consist of a degenerate polygon with two
corners, ((−∞, y) and (∞, y)), namely it is the half plane y ≥ 0.
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Figure 1: The functions Ψ1, Ψ2.

Let Ψ1, Ψ2 denote the solutions of (2.6) associated with these two corners, see figure 1.
Then

Ψ1(x, y, λ) = I +

∫ x

−∞

e−ω(λ)(x−ξ)σ̂3 (QΨ1) (ξ, y, λ)dξ, (3.1)

Ψ2(x, y, λ) = I −

∫
∞

x

e−ω(λ)(x−ξ)σ̂3 (QΨ2) (ξ, y, λ)dξ, (3.2)

x ∈ R, 0 ≤ y < ∞, λ ∈ R.

The first of equations (2.8) implies that the first and the second column vectors of Ψ1 are
analytic in λ for Imλ < 0 and Imλ > 0 respectively. The function Ψ2 has the opposite
analyticity. This remark justifies the following notations:

Ψ1 = (Ψ−

1 ,Ψ+
1 ), λ ∈ (C−, C+), Ψ2 = (Ψ+

2 ,Ψ−

2 ), λ ∈ (C+, C−). (3.3)

Using the fact that Ψ+
1 and Ψ+

2 are analytic fucntions of λ for Imλ > 0, whereas Ψ−

1 and
Ψ−

2 are analytic functions of λ for Imλ < 0, it is possible to formulate a Riemann-Hilbert
(RH) problem with a jump along the real axis of the complex λ plane. In order to compute
the jump matrix of the RH problem, we use the fact that any two solutions of the Lax pair
(2.2)-(2.3) are related by a matrix of the form [exp(−(ω(λ)x + Ω(λ)y)σ̂3)]R(λ). Hence

Ψ2(x, y, λ) = Ψ1(x, y, λ)e−(ω(λ)x+Ω(λ)y)σ̂3R(λ), λ ∈ R, x ∈ R, 0 ≤ y < ∞. (3.4)

Evaluating this equation at the point {y = 0, x → −∞}, we find

R(λ) = I −

∫
∞

−∞

eω(λ)ξσ̂3 (QΨ2) (ξ, 0, λ)dξ, λ ∈ R. (3.5)

Introducing the notation

m(x, λ) = Ψ2(x, 0, λ), λ ∈ (C+, C−), x ∈ R,

it follows that the spectral function R(λ) is uniquely determined in terms of the solution of
the linear Volterra integral equation

m(x, λ) = I −

∫
∞

x

e−ω(λ)(x−ξ)σ̂3Q0(ξ, λ)m(ξ, λ)dξ, λ ∈ (C+, C−), x ∈ R, (3.6)
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where Q0 is defined in terms of the boundary values q(x, 0) and qy(x, 0) by

Q0(x, λ) =
1

4

(
i
λ (1 − cos q(x, 0)) − 1

λ sin q(x, 0) + iqx(x, 0) + qy(x, 0)
1
λ sin q(x, 0) + iqx(x, 0) + qy(x, 0) i

λ (cos q(x, 0) − 1)

)
,

x ∈ R, λ ∈ C. (3.7)

The symmetry properties of Q0 imply certain symmetry relations for m(x, λ) and hence for
R(λ). This implies that R(λ) has the following form:

R(λ) =

(
a(λ) b(−λ)
b(λ) a(−λ)

)
, λ ∈ R, (3.8)

where a(λ) has an analytic continuation for Imλ > 0 and b(λ) is defined for λ ∈ R.

The global relation

The global relation yields the following important equations:

a(λ) = 1, Imλ ≥ 0; b(λ) = 0, Reλ ≥ 0. (3.9)

These relations were derived in [49]. We give here an alternative derivation by introducing an
additional solution of equation (2.6) associated with the vertex (x,∞), namely we consider
the function Ψ3 defined by

Ψ3(x, y, λ) = I − i

∫
∞

y

e−Ω(λ)(y−η)σ̂3Q(x, η,−λ)Ψ3(x, η, λ)dη, x ∈ R, 0 < y < ∞, λ ∈ R.

(3.10)
The second of equation (2.8) implies that the first and the second column vectors of Ψ3 are
analytic in λ for Reλ ≥ 0 and Reλ ≤ 0 respectively. This fact justifies the notation

Ψ3 = (ΨR
3 ,ΨL

3 ), (Reλ ≥ 0, Reλ ≤ 0). (3.11)

The functions Ψ2 and Ψ3 satisfy the same boundary condition at infinity and the same
equation, hence they are equal in their respective domain of analyticity, i.e.

Ψ+
2 (x, y, λ) = ΨR

3 (x, y, λ), x ∈ R, 0 < y < ∞, 0 ≤ arg(λ) ≤
π

2
. (3.12)

Similarly, the functions Ψ1 and Ψ3 satisfy the same boundary condition at infinity and the
same equation, hence they are equal in their respective domain of analyticity, i.e.

Ψ−

1 (x, y, λ) = ΨR
3 (x, y, λ), x ∈ R, 0 < y < ∞,

3π

2
≤ arg(λ) ≤ 2π. (3.13)

We denote by m+ = (m1,m2)
τ the first column vector of m(x, λ) given by (3.6), i.e.

m+(x, λ) =

(
m1

m2

)
= Ψ+

2 (x, 0, λ), x ∈ R, λ ∈ C
+. (3.14)
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Then, evaluating equation (3.12) at y = 0 we find

m+(x, λ) = ΨR
3 (x, 0, λ), x ∈ R, 0 ≤ arg(λ) ≤

π

2
. (3.15)

Letting x → −∞ in (3.15) we find

a(λ) = 1, 0 ≤ arg(λ) ≤
π

2
; b(λ) = 0, λ ≥ 0. (3.16)

The analytic continuation of the first equation implies the first of equations (3.9).
Similarly, we denote by n− = (n1, n2)

τ the first column vector of Ψ1(x, 0, λ):

n−(x, λ) =

(
n1

n2

)
= Ψ−

1 (x, 0, λ), x ∈ R, λ ∈ C
−. (3.17)

Then evaluating the equation (3.13) at y = 0 we find

n−(x, λ) = ΨR
3 (x, 0, λ), x ∈ R,

3π

2
≤ arg(λ) ≤ 2π. (3.18)

Summary

The above discussion suggests the following steps for solving the Dirichlet problem for the
elliptic sine-Gordon equation:

(i) Given Dirichlet data q(x, 0) = g0(x), characterise the unknown Neumann boundary value
qy(x, 0) by the requirement that the spectral functions a(λ), b(λ) satisfy the constraints
(3.16). These functions are defined as follows:

a(λ) = 1 −
1

4

∫
∞

−∞

{
i

λ
(1 − cos g0(ξ))m1(ξ, λ) +

[
−

1

λ
sin g0(ξ) + iġ0(ξ) + qy(ξ, 0)

]
m2(ξ, λ)

}
dξ,

Imλ ≥ 0, (3.19)

b(λ) = −
1

4

∫
∞

−∞

e−2ω(λ)ξ

{
i

λ
(cos g0(ξ) − 1)m2(ξ, λ) +

[
1

λ
sin g0(ξ) + iġ0(ξ) + qy(ξ, 0)

]
m1(ξ, λ)

}
dξ,

λ ∈ R, (3.20)

where (m1,m2)
τ satisfies the first column vector of the ODE (3.6) with q(x, 0) replaced by

g0(x), and ġ0(x) denotes the derivative of g0(x).

(ii) After characterising b(λ) in terms of the given data g0(x), solve the RH problem with
the jump matrix uniquely defined in terms of b(λ). This RH problem is given by (3.27)
below, and is equivalent to the following equation

(Ψ−

1 (x, y, λ),−Ψ+
1 (x, y, λ)) = I+

1

2πi

∫ 0

−∞

(Ψ−

1 (x, y, l),Ψ+
1 (x, y, l))

(
0 b(−l)e−2(ω(l)x+Ω(l)y)

b(l)e2(ω(l)x+Ω(l)y) 0

)
dl

l − λ
, λ /∈ R.

(3.21)
Equation (2.2) implies

iqx(x, y) + qy(x, y) = −
1

π

∫ 0

−∞

b(l)(Ψ+
1 )2(x, y, l)e2ω(l)x+2Ω(l)ydl, x ∈ R, 0 < y < ∞,

(3.22)
where (Ψ+

1 )2 denotes the second component of the vector Ψ+
1 .
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The existence theorem

The above procedure outlines how, under the assumption of existence, a solution can be
constructed. We now prove that, assuming the given boundary conditions are such that the
associated spectral functions a(λ), b(λ) satisfy the global relation and have sufficiently small
norm, the problem admits a unique solution.

Theorem 3.1 Let the functions g0(x), g1(x) be such that g0 − 2πm ∈ H1(R), m ∈ Z, and
g1(x) ∈ H1(R).
Define a(λ) and b(λ) by

a(λ) = 1 −
1

4

∫
∞

−∞

{
i

λ
(1 − cos g0(ξ))m1(ξ, λ) +

[
−

1

λ
sin g0(ξ) + iġ0(ξ) + g1(ξ)

]
m2(ξ, λ)

}
dξ,

Imλ ≥ 0, (3.23)

b(λ) = −
1

4

∫
∞

−∞

e−2ω(λ)ξ

{
i

λ
(cos g0(ξ) − 1)m2(ξ, λ) +

[
1

λ
sin g0(ξ) + iġ0(ξ) + g1(ξ)

]
m1(ξ, λ)

}
dξ,

λ ∈ R, (3.24)

where (m1(x, λ), m2(x, λ)) denotes the solution of the following system of ODEs:





(m1)x = i
λ [1 − cos g0(x)]m1 − [ 1

λ sin g0(x) − iġ0(x) − g1(x)]m2,

(m2)x + 2ω(λ)m2 = [ 1
λ sin g0(x) + iġ0(x) + g1(x)]m1 −

i
λ [1 − cos g0(x)]m2,

limx→∞(m1,m2) = (1, 0), x ∈ R, λ ∈ C
+.

(3.25)

Assume that, given g0(x), there exists a function g1(x) such that a(λ), b(λ) satisfy the
following constraints:

a(λ) = 1, 0 ≤ arg(λ) ≤ π, b(λ) = 0, λ ≥ 0. (3.26)

Define the following Riemann-Hilbert problem in terms of b(λ):

Ψ−(x, y, λ) = Ψ+(x, y, λ)J(x, y, λ), λ ∈ R, Ψ = I + O

(
1

λ

)
, λ → ∞, (3.27)

where

J =

(
1 b(−λ)e−θ(x,y,λ)

−b(λ)eθ(x,y,λ) 1

)
θ(x, y, λ) = 2(ω(λ)x + Ω(λ)y). (3.28)

If the H1 norm of the data g0(x), g1(x) is sufficiently small, the above Riemann-Hilbert
problem admits a unique solution Ψ(x, y, λ).
Let the function q(x, y), x ∈ R, 0 < y < ∞, be defined in terms of this unique solution by

iqx + qy = − lim
λ→∞

(iλΨ)12 , cos q(x, y) = 1 − lim
λ→∞

4iλ

(
∂Ψ

∂x

)

22

− 2 lim
λ→∞

(λΨ)
2
12 . (3.29)

Then q(x, y) solves the elliptic sine-Gordon equation (2.1) in the half plane y > 0, and
furthermore

q(x, 0) = g0(x), qy(x, 0) = g1(x), x ∈ R. (3.30)
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Proof

The unique solvability of the Riemann-Hilbert problem (3.27) is a consequence of the so-
called vanishing lemma, which states that the problem corresponding to the same jump
matrix, but with the condition Ψ = O

(
1
λ

)
at infinity, admits only the trivial solution. The

validity of the lemma follows from our small norm assumption.
The proof that q(x, y) defined by (3.29) is a solution of equation (2.1) is a standard appli-
cation of ideas of the so-called dressing method, see [23].

To prove (3.30), we note that the map (a(λ), b(λ)) → (g0(x), g1(x)) which is the inverse of
the map defined by (3.24), is given by

cos g0(x) = 1 − lim
λ→∞

4iλ

(
∂M(x, λ)

∂x

)

22

− 2 lim
λ→∞

(λM(x, λ))
2
12 ,

(3.31)

iġ0(x) + g1(x) = −i lim
λ→∞

(λM(x, λ))12 , x ∈ R, λ ∈ C
−,

where M is the solution of the Riemann-Hilbert problem

M−(x, λ) = M+(x, λ)J (x)(x, λ), λ ∈ R, M = I + O

(
1

λ

)
, |λ| → ∞, (3.32)

with

J (x)(x, λ) =

(
1 b(−λ)

a(−λ)e
−2ω(λ)x

− b(λ)
a(λ)e

2ω(λ)x 1
a(λ)a(−λ)

)
, λ ∈ R, x ∈ R. (3.33)

If the constraints (3.26) are satisfied, then the jump matrix of the above Riemann-Hilbert
problem satisfies

J (x)(x, λ) = J(x, 0, λ), (3.34)

where J is given by (3.27). Evaluating equations (3.27) and (3.28) at y = 0 and comparing
the resulting equations with equations (3.32) and (3.33), where J (x) is given by (3.34),
we conclude that Ψ(x, 0, λ) = M(x, λ). Hence, evaluating equation (3.29) at y = 0 and
comparing the resulting expression with equations (3.31) we find equations (3.30).

QED

4 The linear limit

In the linear limit,

(Ψ+
1 )2 → 1, m1 → 1, m2 → 0, sin g0 → g0,

thus equation (3.24) becomes

b(λ) = −
1

4

∫
∞

−∞

e−2ω(λ)ξ

[
χ(ξ) +

g0(ξ)

λ

]
dξ, λ ∈ R, (4.1)

where χ(ξ) is defined by
χ(ξ) = iġ0(ξ) + qy(ξ, 0), ξ ∈ R. (4.2)
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Equation (3.22) becomes

iqx(x, y) + qy(x, y) = −
1

π

∫ 0

−∞

b(l)e2ω(l)x+2Ω(l)ydl, x ∈ R, 0 < y < ∞. (4.3)

Equation (4.3) implies

q(x, y) = −
1

π

∫ 0

−∞

b(l)

l
e2ω(l)x+2Ω(l)ydl, x ∈ R, 0 < y < ∞. (4.4)

Indeed, applying the operator i∂x + ∂y to equation (4.4) and using

2iω(λ) + 2Ω(λ) = λ,

we find (4.3).
It can immediately be verified that equation (4.4) satisfies the modified Helmholtz equation

qxx + qyy = q, x ∈ R, 0 < y < ∞.

The expression for b(λ) given by equation (4.1) involves the unknown function qy(x, 0).
Thus, in order to obtain an effective solution of the linear problem, we must use the global
relation {b(λ) = 0, λ > 0} to eliminate this unknown boundary value. In this respect we
note that the transformation λ → − 1

λ leaves ω(λ) invariant. Using this transformation in
the global relation {b(λ) = 0, λ > 0}, we find

∫
∞

−∞

e−2ω(λ)ξ [χ(ξ) − λg0(ξ)] dξ = 0, λ ≤ 0. (4.5)

Multiplying this equation by 1
4 and adding the resulting equation to equation (4.1) with

λ ≤ 0, we find

b(λ) = −Ω(λ)

∫
∞

−∞

e−2ω(λ)ξg0(ξ)dξ, λ ≤ 0. (4.6)

In summary, the solution of the Dirichlet problem of the modified Helmholtz equation in
the upper half plane is given by equation (4.4), where b(λ) is given explicitly in terms of the
Dirichlet boundary condition q(x, 0) = g0(x) by equation (4.6).

The above construction of b(λ) for the modified Helmholtz equation illustrates the following
remarkable fact that occurs in a large class of linear boundary value problems: by utilising
certain invariant properties in the complex λ plane ( in our example, λ → − 1

λ ), it is pos-
sible to eliminate the unknown boundary values, i.e. it is possible to compute the spectral
functions without the need to compute the unknown boundary values.
For nonlinearisable integrable boundary value problems, it is not possible to eliminate the
unknown boundary values; however, it is possible to characterise these unknown functions
in terms of the given boundary conditions by analysing the global relation. The relevant
construction needed here is presented in section 5. In order to motivate this construction
we present next two different approaches. In both approaches, the global relation (4.5) is
used to obtain the following formula:

χ(x) =
1

π

∫ 0

−∞

Ω(λ)e2ω(λ)x

(∫
∞

−∞

e−2ω(λ)ξg0(ξ)dξ

)
dλ, x ∈ R. (4.7)
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This formula expresses the unknown Neumann boundary values in terms of the given Dirich-
let boundary condition.
Before deriving this equation, we note that the right hand side of (4.7) coincides with the
expression obtained by evaluating equation (4.3) at y = 0.

In the first approach, we consider the global relation {b(λ) = 0, λ ≥ 0}, i.e. the equation

∫
∞

−∞

e−2ω(λ)ξ

[
χ(ξ) +

g0(ξ)

λ

]
dξ = 0, λ ≥ 0. (4.8)

We multiply (4.8) by (1 + 1
λ2 )e2ω(λ)x and integrate the resulting equation with respect to λ

along the positive real axis, to obtain

lim
ε→0

∫
∞

ε

(
1 +

1

λ2

)[∫
∞

−∞

e2ω(λ)(x−ξ)χ(ξ)dξ

]
dλ =

− lim
ε→0

∫
∞

ε

1

λ

(
1 +

1

λ2

)
e2ω(λ)x)

[∫
∞

−∞

e−2ω(λ)ξg0(ξ)dξ

]
dλ. (4.9)

Using in the left and the right hand sides of equation (4.9) the change of variables, respec-
tively

Λ =
1

2

(
λ −

1

λ

)
, l = −

1

λ
,

equation (4.9) becomes equation (4.7).

In the second approach, we use the linear limit of the more general global relation (3.15)
(recall that the global relation {b(λ) = 0, λ ≥ 0} is the particular case of equation (3.15)
when x → −∞). The linear limit of equation (3.15) yields

I −

∫
∞

x

e−ω(λ)(x−ξ)σ̂3Q
(L)
0 (ξ, λ)dξ = I − i

∫
∞

0

eΩ(λ)ησ̂3Q(L)(ξ, η,−λ)dη,

x ∈ R, 0 < arg(λ) <
π

2
, (4.10)

where Q
(L)
0 denotes the linear limit of the expression Q0 defined in (3.7) and Q(L) denotes

the linear limit of the expression for Q defined in (2.5), i.e.

Q
(L)
0 (ξ, λ) =

1

4

(
0 χ(ξ) − g0(ξ)

λ

χ(ξ) + g0(ξ)
λ 0

)
, ξ ∈ R, λ ∈ C (4.11)

and

Q(L)(x, η,−λ) =
1

4

(
0 iqx(x, η) + qy(x, η) + q(x,η)

λ

iqx(x, η) + qy(x, η) − q(x,η)
λ 0

)
,

x ∈ R, 0 < η < ∞, λ ∈ C. (4.12)

The (21) component of the matrix equation (4.10) yields

∫
∞

x

(
χ(ξ) +

g0(ξ)

λ

)
e−2ω(λ)(ξ−x)dξ = i

∫
∞

0

(
iqx(x, η) + qy(x, η) −

q(x, η)

λ

)
e−2Ω(λ)ηdη,

10



b.

λ plane

0 ε

iε

Figure 2: The contour ∂Dε
1

x ∈ R, 0 < η < ∞, 0 ≤ arg(λ) ≤
π

2
. (4.13)

Before solving this equation for χ(x), we note that the global relation (4.8) is a particular
case of equation (4.13). Indeed, the exponentials appearing in the left and the right hand
sides of equation (4.9) are bounded as |λ| → ∞ and as |λ| → 0, if 0 ≤ arg(λ) ≤ π and
−π

2 ≤ arg(λ) ≤ π
2 respectively. Thus equation (4.13) is well defined for 0 ≤ arg(λ) ≤ π

2 .
However, if x → −∞, the exponential on the left hand side of (4.13) is bounded only for
λ ∈ R, thus in this case equation (4.13) is valid only for λ ≥ 0; then letting x → −∞ in
(4.13) we find equation (4.8).
We multiply equation (4.13) by 1 + 1

λ2 , subtract from both sides of the resulting equation

the term 2ig0(x)
λ2 +

4iqy(x,0)
λ and then integrate with respect to λ along the curve ∂D1 defined

as follows (see figure 2):

∂D1 = lim
ε→0

∂Dε
1 = {|λ|ei0 ∪ |λ|e

iπ
2 , ε ≤ |λ| < ∞}. (4.14)

The resulting equation can be simplified using the following results:

(i) ∫

∂D1

(
1 +

1

λ2

)[∫
∞

x

χ(ξ)e
i
2
(λ− 1

λ
)(ξ−x)dξ

]
dλ = 2πχ(x), x ∈ R. (4.15)

Indeed, we use Cauchy’s theorem in the domain bounded by the union of ∂Dε
1 and of

the circular arcs C(ε) and C(∞) (see figure 3)

C(ε) = {εeiθ, 0 ≤ θ ≤
π

2
}, C(∞) = lim

R→∞

C(R), C(R) = {Reiθ, 0 ≤ θ ≤
π

2
}.

The integrand of the λ-integral in (4.15) is an analytic function in λ, with poles at the

origin and at infinity. Integration by parts yields the term 2iχ(x)
λ

λ2+1
λ2

−1 , thus

(
1 +

1

λ2

)∫
∞

x

χ(ξ)e
i
2
(λ− 1

λ
)(ξ−x)dξ ∼

{
2iχ(x)

λ , |λ| → ∞,

− 2iχ(x)
λ , |λ| → 0,

x ∈ R.

11



.
0 ε

iε

R

iR

C(R)

C(ε)

Figure 3: The arcs C(ε) and C(R)

Thus Cauchy’s theorem yields

∫

∂D1

(
1 +

1

λ2

)[∫
∞

x

χ(ξ)e
i
2
(λ− 1

λ
)(ξ−x)dξ

]
dλ−2iχ(x)

∫ 0

π/2

idθ+2iχ(x)

∫ π/2

0

idθ = 0, x ∈ R,

i.e. equation (4.15).

(ii)

∫

∂D1

(
1 +

1

λ2

)
i

[∫
∞

0

(iqx(x, η) + qy(x, η))e−
1

2
(λ+ 1

λ
)ηdη

]
dλ = 0, x ∈ R. (4.16)

The integrand of the λ-integral in (4.16) is again an analytic function of λ with poles

at the origin and at infinity. Integration by parts yields the term 2iχ(x)
λ , thus

(
1 +

1

λ2

)
i

∫
∞

0

(iqx(x, η) + qy(x, η))e−
1

2
(λ+ 1

λ
)ηdη ∼

{
2iχ(x)

λ , |λ| → ∞,
2iχ(x)

λ , |λ| → 0,
x ∈ R,

and Cauchy’s theorem yields

∫

∂D1

(
1 +

1

λ2

)
i

[∫
∞

0

(iqx(x, η) + qy(x, η))e−
1

2
(λ+ 1

λ
)ηdη

]
dλ+2iχ(x)

∫ 0

π/2

idθ+2iχ(x)

∫ π/2

0

idθ = 0,

hence equation (4.16).

(iii)

∫

∂D1

[
1

λ

(
1 +

1

λ2

)
(−i)

∫
∞

0

q(x, η)e−
1

2
(λ+ 1

λ
)ηdη +

2ig0(x)

λ2
+

4iqy(x, 0)

λ + λ3

]
dλ = 0, x ∈ R.

(4.17)

12
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6

l = 0

Im(l)

Re(l)

Figure 4: The contour ∂D2 in the l- plane

Indeed, integrating by parts twice, we find

1

λ

(
1 +

1

λ2

)
(−i)

∫
∞

0

q(x, η)e−
1

2
(λ+ 1

λ
)ηdη+

2ig0(x)

λ2
+

4iqy(x, 0)

λ + λ3
∼






O
(

1
λ2

)
, |λ| → ∞,

O(1), |λ| → 0,
x ∈ R.

Hence the integrand of the λ integral on the right hand side of (4.17) is analytic and
bounded in D1 and equation (4.17) follows.

(iv) Define G(λ) by the integral below; integrating by parts twice we find

G(λ) =
1

λ

(
1 +

1

λ2

)∫
∞

x

g0(ξ)e
i
2
(λ− 1

λ
)(ξ−x)dξ+

2ig0(x)

λ2
+

4iqy(x, 0)

λ + λ3
∼






O
(

1
λ2

)
, |λ| → ∞,

O
(

1
λ

)
, |λ| → 0.
(4.18)

Thus the only singularity of the function G(λ) in D1 a simple pole at the origin, and
its integral around ∂D1 is bounded.

Using equations (4.15)-(4.18) we find

2πχ(x) = −

∫

∂D1

[
1

λ

(
1 +

1

λ2

)
e2ω(λ)x

(∫
∞

x

g0(ξ)e
−2ω(λ)ξdξ

)
+

2ig0(x)

λ2
+

4iqy(x, 0)

λ + λ3

]
dλ,

x ∈ R. (4.19)

Letting l = − 1
λ , equation (4.19) becomes

2πχ(x) = 4

∫

∂D2

[
Ω(l)e2ω(l)x

(∫
∞

x

g0(ξ)e
−2ω(l)ξdξ

)
−

ig0(x)

2
+

ilqy(x, 0)

l2 + 1

]
dl, x ∈ R,

(4.20)
where ∂D2 is the oriented boundary of the second quadrant of the complex l-plane shown
in figure 4.

We now repeat the above computations starting with the linear limit of equation (3.18),
namely the equation

I +

∫ x

−∞

e−ω(λ)(x−ξ)σ̂3Q
(L)
0 (x, λ)dξ = I − i

∫
∞

0

eΩ(λ)ησ̂3Q(L)(ξ, η, λ)dη, (4.21)
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?

l = 0
Re(l)

Im(l)

Figure 5: The contour ∂D3 in the l- plane

valid for 3π
2 ≤ arg(λ) ≤ 2π.

The (21) component of the matrix equation (4.21) yields

∫ x

−∞

(
χ(ξ) +

g0(ξ)

λ

)
e−2ω(λ)(ξ−x)dξ = −i

∫
∞

0

(
iqx(x, η) + qy(x, η) −

q(x, η)

λ

)
e−2Ω(λ)ηdη,

x ∈ R, 0 < η < ∞,
3π

2
≤ arg(λ) ≤ 2π, x ∈ R. (4.22)

Multiplying this equation by 1 + 1
λ2 and subtracting the leading order terms at the origin,

using computation analogous to those presented in (i)-(iv) above, we find

2πχ(x) = −

∫

∂D4

[
1

λ

(
1 +

1

λ2

)
e2ω(λ)x

(∫ x

−∞

g0(ξ)e
−2ω(λ)ξdξ

)
−

2ig0(x)

λ2
−

4iqy(x, 0)

λ + λ3

]
dλ,

x ∈ R, (4.23)

where ∂D4 is the boundary of the fourth quadrant in the complex λ plane. Hence using the
change of variables l = − 1

λ ,

2πχ(x) = 4

∫

∂D3

[
Ω(l)e2ω(l)x

(∫ x

−∞

g0(ξ)e
−2ω(l)ξdξ

)
+

ig0(x)

2
−

ilqy(x, 0)

l2 + 1

]
dl, x ∈ R,

(4.24)
where ∂D3 is the oriented boundary of the third quadrant of the complex l-plane shown in
figure 5.
Adding equations (4.20) and (4.24) and deforming the contours along the positive and the
negative imaginary axis to contours along the positive real axis we find

χ(x) =
1

π

∫
∞

−∞

[
Ω(l)e2ω(l)x

(∫
∞

−∞

g0(ξ)e
−2ω(l)ξdξ

)]
dl, x ∈ R. (4.25)

Using the global relation {b(λ) = 0, λ ≥ 0}, equation (4.25) reduces to equation (4.7).

5 The Dirichlet to Neumann map

In this section, with slight abuse, we use the following notation:

χ(x, y) = iqx(x, y) + qy(x, y), χ(x) = iġ0(x) + qy(x, 0). (5.1)

Our aim is to characterise uniquely the unknown function χ(x) (hence the Neumann datum
g1(x) = qy(x, 0)) in terms of the given function g0(x). We prove the following result:

14



Theorem 5.1 Let q(x, y) satisfy the elliptic sine-Gordon equation (2.1), for −∞ < x < ∞,
0 < y < ∞, with prescribed Dirichlet boundary condition (within 2π multiples)

q(x, 0) = g0(x), g0(x) − 2πm ∈ H1(R) (some m ∈ Z). (5.2)

The Neumann boundary value is characterised by

qy(x, 0) cos
g0(x)

2
= −iġ0(x) cos

g0(x)

2
x ∈ R

+
1

π

∫

∂R

Ω(l)

{∫
∞

x

[
sin g0(ξ)m1(ξ,−

1

l
) + i(cos g0(ξ) − 1)m2(ξ,−

1

l
)

]
e−2ω(l)(ξ−x)dξ

+

∫ x

−∞

[
sin g0(ξ)n1(ξ,−

1

l
) + i(cos g0(ξ) − 1)n2(ξ,−

1

l
)

]
e−2ω(l)(ξ−x)dξ

}
dλ, (5.3)

where the vectors (m1(x, λ),m2(x, λ)) and (n1(x, λ), n2(x, λ)) satisfy the ODEs






(m1)x = i
λ (1 − cos g0(x))m1 − [ 1

λ sin g0(x) − χ(x)]m2

limx→∞(m1,m2) = (1, 0)
(m2)x + 2ω(λ)m2 = [ 1

λ sin g0(x) + χ(x)]m1 −
i
λ (1 − cos g0(x))m2

x ∈ R, λ ∈ C
+,






(n1)x = i
λ (1 − cos g0(x))n1 − [ 1

λ sin g0(x) − χ(x)]n2

limx→−∞(n1, n2) = (1, 0)
(n2)x + 2ω(λ)n2 = [ 1

λ sin g0(x) + χ(x)]n1 −
i
λ (1 − cos g0(x))n2

x ∈ R, λ ∈ C
−.

Proof:

To prove this result, we consider the global relation (3.15). The (21) element of this relation
gives

−
i

4

∫
∞

0

e−2Ω(λ)η

[
[χ(x, η) −

1

λ
sin q(x, η)](ΨR

3 )11 −
i

λ
(cos q(x, η) − 1)(ΨR

3 )21

]
dη =

−
1

4

∫
∞

x

e−2ω(λ)(ξ−x)

[
χ(ξ)m1(ξ, λ) +

1

λ
sin g0(ξ)m1(ξ, λ) +

i

λ
(cos g0(ξ) − 1)m2(ξ, λ)

]
dξ,

x ∈ R, 0 ≤ arg λ ≤
π

2
. (5.4)
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Multiplying equation (5.4) by 1 + 1
λ2 , and integrating the resulting expression with respect

to λ along the boundary of D1 defined by (4.14), we obtain

i

4

∫

∂D1

(
1 +

1

λ2

)∫
∞

0

e−2Ω(λ)η
[
χ(x, η)(ΨR

3 )11(x, η, λ)
]
dηdλ

−
i

4

∫

∂D1

1

λ

(
1 +

1

λ2

)∫
∞

0

e−2Ω(λ)η
[
(sin q(ΨR

3 )11 + i(cos q − 1)(ΨR
3 )21

]
(x, η, λ)dηdλ

=
1

4

∫

∂D1

(
1 +

1

λ2

)∫
∞

x

(iqx(ξ, 0) + qy(ξ, 0))m1(ξ, λ)e−2ω(λ)(ξ−x)dξdλ

+
1

4

∫

∂D1

1

λ

(
1 +

1

λ2

)∫
∞

x

[sin g0(ξ)m1(ξ, λ) + i(cos g0(ξ) − 1)m2(ξ, λ)] e−2ω(λ)(ξ−x)dξdλ.

The above equation is the analogue of the equation resulting from (4.13) in the linear case.
We can simplify this equation using the following facts:

(i) In the first quadrant of the λ complex plane, the function ΨR
3 (x, 0, λ), x ∈ R, has the

following asymptotic behaviour:

(ΨR
3 )11(x, 0, λ) = m1(x, λ) ∼






1 + A(x)
λ + O

(
1
λ2

)
, |λ| → ∞,

cos g0(x)
2 + O(1), |λ| → 0,

(5.5)

(ΨR
3 )21(x, 0, λ) = m2(x, λ) ∼






− iχ(x)
2λ + O

(
1

λ2

)
, |λ| → ∞,

i sin g0(x)
2 + O(1), |λ| → 0,

(5.6)

where A(x) satisfies

Ax(x) =
1

4
(1 − cos g0(x)) −

1

2
χ(x)2, lim

x→∞

A(x) = 1.

We give a proof of this statement in the Appendix.

(ii)

i

4

∫

∂D1

(
1 +

1

λ2

)∫
∞

0

e−2Ω(λ)η
[
χ(x, η)(ΨR

3 )11(x, η, λ)
]
dηdλ =

π

4
χ(x)(1 − cos

g0(x)

2
).

(5.7)
Integrating by parts, we find that the asymptotic behaviour of the integrand of the
left hand side of (5.7) is

iχ(x)

2λ
(ΨR

3 )11(x, 0, λ) ∼






iχ(x)
2λ λ → ∞

iχ(x)
2λ cos g0(x)

2 , λ → 0.

Calculating the residues at infinity and at the origin, we find (5.7).
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(iii) For x ∈ R,

1

4

∫

∂D1

(
1 +

1

λ2

)∫
∞

x

χ(ξ)m1(ξ, λ)e−2ω(λ)(ξ−x)dξdλ =
π

4
χ(x)(1 + cos

g0(x)

2
). (5.8)

Integrating by parts, we find that the asymptotic behaviour of the integrand of the
left hand side of (5.8) is

i

2λ

λ2 + 1

λ2 − 1
χ(x)m1(x, λ) ∼






iχ(x)
2λ |λ| → ∞

− iχ(x)
2λ cos g0(x)

2 , |λ| → 0,

x ∈ R, λ ∈ C
+.

Calculating the residues at infinity and at the origin, we find (5.7).

(iv)

∫

∂D1

{(
−

i

4

)
1

λ

(
1 +

1

λ2

)∫
∞

0

e−2Ω(λ)η
[
(sin q(ΨR

3 )11 + i(cos q − 1)(ΨR
3 )21

]
(x, η, λ)dη

+
i

λ2
sin

g0(x)

2
+

iqy(x, 0)

λ + λ3
cos

g0(x)

2

}
dλ = 0, x ∈ R. (5.9)

Integrating by parts and using the asymptoptic behaviour of ΨR
3 , as well as the identity

sin g0(x) cos
g0(x)

2
+ i(cos g0(x) − 1)i sin

g0(x)

2
= 2 sin

g0(x)

2
,

we find that the integrand of the left hand side of (5.9) is of order O
(

1
λ2

)
at infinity

and O(1) at the origin, It follows that the integrand is analytic and bounded in D1,
hence its integral around the boundary vanishes.

In summary, we find

π

4
χ(x)(1 − cos

g0(x)

2
) =

π

4
χ(x)(1 + cos

g0(x)

2
) (5.10)

+
1

4

∫

∂D1

{
1

λ

(
1 +

1

λ2

)∫
∞

x

[sin g0(ξ)m1(ξ, λ) + i(cos g0(ξ) − 1)m2(ξ, λ)] e−2ω(λ)(ξ−x)dξ

+
i

λ2
sin

g0(x)

2
+

iqy(x, 0)

λ + λ3
cos

g0(x)

2

}
dλ, x ∈ R.

Simplifying and using the change of variables l = − 1
λ , we finally obtain

π

2
χ(x) cos

g0(x)

2
=

∫

∂D2

{
Ω(l)

∫
∞

x

[
sin g0(ξ)m1(ξ,−

1

l
) + i(cos g0(ξ) − 1)m2(ξ,−

1

l
)

]
e−2ω(l)(ξ−x)dξ

− i sin
g0(x)

2
+

ilqy(x, 0)

1 + l2
cos

g0(x)

2

}
dl, x ∈ R. (5.11)
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We now consider the global relation (3.18). Repeating the construction where we now use
equation (3.18) in the fourth quadrant, we find

π

2
χ(x) cos

g0(x)

2
=

∫

∂D4

{
Ω(l)

∫ x

−∞

[
sin g0(ξ)n1(ξ,−

1

l
) + i(cos g0(ξ) − 1)n2(ξ,−

1

l
)

]
e−2ω(l)(ξ−x)dξ

+ i sin
g0(x)

2
−

ilqy(x, 0)

1 + l2
cos

g0(x)

2

}
dl, x ∈ R. (5.12)

Adding (5.12) and (5.11) and deforming the appropriate contours to R, we find

χ(x) cos
g0(x)

2
=

1

π

∫

∂R

Ω(l)

{∫
∞

x

[
sin g0(ξ)m1(ξ,−

1

l
) + i(cos g0(ξ) − 1)m2(ξ,−

1

l
)

]
e−2ω(l)(ξ−x)dξ

+

∫ x

−∞

[
sin g0(ξ)n1(ξ,−

1

l
) + i(cos g0(ξ) − 1)n2(ξ,−

1

l
)

]
e−2ω(l)(ξ−x)dξ

}
dλ. (5.13)

Using the definition of χ(x) this is equation (5.3).

QED

Remark 5.1 The linear limit of equation (5.13) is equation (4.7). Indeed, in the linear
limit

m1, n1 → 1, m2, n2 → 0, sin g0 → g0, cos g0, cos
g0

2
→ 1,

so that (5.13) becomes

χ(x) =
1

π

∫

∂R

Ω(l)

{∫
∞

x

g0(ξ)e
−2ω(l)(ξ−x)dξ +

∫ x

−∞

g0(ξ)e
−2ω(l)(ξ−x)dξ

}
dλ,

which is (4.7).

6 Conclusions

We have derived the Dirichlet to Neumann map for an elliptic nonlinear boundary value
problem, namely the Dirichlet problem for the elliptic sine-Gordon equation posed in a half
plane, see Theorem 5.1. This nonlinear map characterises the spectral functions in terms
of the given boundary conditions only. The derivation is based on the general ideas of the
analogous derivation for the case of integrable evolution equations, but it also contains novel
steps, in particular it involves the analysis of all eigenfunctions of the direct problem. This
is conceptually justified by the fact that, contrary to the case of evolution equations, there
is no part of the boundary where all boundary values are prescribed. Hence, the details of
the derivation of the Dirichlet to Neumann map are technically more challenging and, to
our knowledge, they are presented for a nonlinear elliptic problem for the first time.
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Appendix

In this appendix we derive the asymptotic formulas (5.5) and (5.6) for the vector m+(x, λ),
x ∈ R, λ ∈ C

+, defined in (3.15).
Recall that the components (m1,m2) of m+(x, λ) satisfy the system of ODEs (see (3.25)

(m1)x =
1

4

[
i

λ
(1 − cos q0(x))m1 + (χ(x) −

sin q0(x)

λ
)m2

]
(6.1)

(m2)x − 2ω(λ)m2 =
1

4

[
(χ(x) +

sin q0(x)

λ
)m1 −

i

λ
(1 − cos q0(x))m2

]
, (6.2)

x ∈ R, λ ∈ C
+,

where χ(x) is given by (5.1).

The asymptotic behaviour of m+(x, λ) as |λ| → ∞

Substituting in (6.1)-(6.2) the ansatz

m1(x, y, λ) = 1 +
A(x)

λ
+ O

(
1

λ2

)
, m2(x, y, λ) =

a(x)

λ
+ O

(
1

λ2

)
,

as |λ| → ∞, 0 < arg(λ) <
π

2
,

and equating powers of 1
λ , we find

a(x) = −
i

2
χ(x), Ax(x) =

i

4
(1 − cos g0(x)) −

i

2
χ(x)2, x ∈ R,

hence the behaviour as |λ| → ∞ in (5.5) and (5.6).

The asymptotic behaviour of m+(x, λ) as |λ| → 0

Note that m+(x, λ), x ∈ R, λ ∈ C
+, is the first column vector of the matrix Ψ2(x, 0, λ)

defined by (3.2). This matrix is bounded for λ ∈ (C+, C−).
Let

Ψ2(x, 0, λ) = ϕ(x, λ)eω(λ)xσ3 .

Since Ψ2 satisfies (2.2), the matrix ϕ satisfies

ϕx = (Q(x, 0, λ) − ω(λ)σ3)ϕ, lim
x→∞

ϕ(x, λ)eω(λ)xσ3 = I.

with Q(x, y, λ) given by (2.5). Thus

ϕx = −
i

4λ
Q̃(x)ϕ + O(1), as |λ| → 0, λ ∈ (C+, C−),

where

Q̃(x) =

(
cos g0(x) −i sin g0(x)
i sin g0(x) − cos g0(x)

)
. (6.3)
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Noting that

Q̃ = Dσ3D
−1, D =

(
cos g0(x)

2 i sin g0(x)
2

i sin g0(x)
2 cos g0(x)

2

)
,

we find

(D−1ϕ)x = −
i

4λ
σ3D

−1ϕ + O(1).

Solving this ODE, using the boundary condition at x → ∞, we find

ϕ(x, λ) =

[(
cos g0(x)

2 i sin g0(x)
2

i sin g0(x)
2 cos g0(x)

2

)
+ O(1)

]
e

1

4iλ
xσ3 , |λ| → 0, λ ∈ (C+, C−). (6.4)

From equation (6.4) it follows that

m+(x, λ) =

(
cos g0(x)

2

i sin g0(x)
2

)
+ O(1), as |λ| → 0, λ ∈ C+, x ∈ R, (6.5)

hence the behaviour as |λ| → 0 in (5.5) and (5.6).
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