8,972 research outputs found

    Verbal reports in psychological investigations: a logical and psychological analysis

    Get PDF
    Since the era of Wundtian introspectionism the status and usefulness of verbal reports from subjects in psychological investigations have been a recurring topic of heated debate and controversy in the international psychological literature. In order to untangle and clearify some of the uncertainties and confusions in this debate, an analysis is attempted of some of the logical and psychological conditions for research involving verbal reports. In the course of this analysis we argue first that any psychological investigation logically presupposes, that communication takes place in a shared language in which both the investigator and the subject know correct statements and descriptions and their correct uses. It is argued, more over, that different areas of psychological research differ distinctively with regard to the opportunities of observation and description - for the investigator and the subject - and,consequently, in the amount of control exercised over events and variables by the investigator and the subject. Examples are given of different psychological conditions and problems encountered in different areas of research and their implications for the development of different research methodes and programmes.Since the era of Wundtian introspectionism the status and usefulness of verbal reports from subjects in psychological investigations have been a recurring topic of heated debate and controversy in the international psychological literature. In order to untangle and clearify some of the uncertainties and confusions in this debate, an analysis is attempted of some of the logical and psychological conditions for research involving verbal reports. In the course of this analysis we argue first that any psychological investigation logically presupposes, that communication takes place in a shared language in which both the investigator and the subject know correct statements and descriptions and their correct uses. It is argued, more over, that different areas of psychological research differ distinctively with regard to the opportunities of observation and description - for the investigator and the subject - and,consequently, in the amount of control exercised over events and variables by the investigator and the subject. Examples are given of different psychological conditions and problems encountered in different areas of research and their implications for the development of different research methodes and programmes

    Parameter estimation with gravitational waves

    Full text link
    The new era of gravitational wave astronomy truly began on September 14, 2015 with the detection of GW150914, the sensational first direct observation of gravitational waves from the inspiral and merger of two black holes by the two Advanced LIGO detectors. In the subsequent first three observing runs of the LIGO/Virgo network, gravitational waves from 50\sim 50 compact binary mergers have been announced, with more results to come. The events have mostly been produced by binary black holes, but two binary neutron star mergers have so far been observed, as well as the mergers of two neutron star - black hole systems. Furthermore, gravitational waves emitted by core-collapse supernovae, pulsars and the stochastic gravitational wave background are within the LIGO/Virgo/KAGRA sensitivity band and are likely to be observed in future observation runs. Beyond signal detection, a major challenge has been the development of statistical and computational methodology for estimating the physical waveform parameters and quantifying their uncertainties in order to accurately characterise the emitting system. These methods depend on the sources of the gravitational waves and the gravitational waveform model that is used. This article reviews the main waveform models and parameter estimation methods used to extract physical parameters from gravitational wave signals detected to date by LIGO and Virgo and from those expected to be observed in the future, which will include KAGRA, and how these methods interface with various aspects of LIGO/Virgo/KAGRA science. Also presented are the statistical methods used by LIGO and Virgo to estimate detector noise, test general relativity, and draw conclusions about the rates of compact binary mergers in the universe. Furthermore, a summary of major publicly available gravitational wave parameter estimation software packages is given

    Multi-Purpose Cyber Environment for Maritime Sector

    Get PDF
    The cyber attack surface in a maritime environment is constantly growing. More current information and computer technologies are being used on cargo and passenger ships to save on operational costs and increase navigational safety. Along with the growing reliance on automation, the risk of a disruption to a vessel's critical systems by drawing on the wrong inputs from sensors to change the behaviour of the actuators has significantly increased. Traditional operational technological systems are much more complicated to update than the automatic software updates we see in information technology systems. To better understand existing cyber threats in the maritime sector and increase cybersecurity resilience, this paper aims to replicate the digital components of a ship's bridge to examine scenarios when the bridge system loses connectivity, receives the wrong inputs from sensors, or the internal system becomes compromised. The simulator differentiates fundamentally from traditional simulators or digital twins in the maritime sector that focus on training seafarers. This environment generates data streams that are similar to those on board a ship. Those data streams can be analysed, modified and spoofed to observe the effects. The effects can be technical but it is equally necessary to analyse how human beings would react in specific circumstances. Our work provides the opportunity to isolate the ship network traffic, conduct penetration testing, find cybersecurity vulnerabilities on devices, and execute cyber attacks without the dangers associated with running such scenarios on a vessel in the open sea.</jats:p

    3D segmentation and localization using visual cues in uncontrolled environments

    Get PDF
    3D scene understanding is an important area in robotics, autonomous vehicles, and virtual reality. The goal of scene understanding is to recognize and localize all the objects around the agent. This is done through semantic segmentation and depth estimation. Current approaches focus on improving the robustness to solve each task but fail in making them efficient for real-time usage. This thesis presents four efficient methods for scene understanding that work in real environments. The methods also aim to provide a solution for 2D and 3D data. The first approach presents a pipeline that combines the block matching algorithm for disparity estimation, an encoder-decoder neural network for semantic segmentation, and a refinement step that uses both outputs to complete the regions that were not labelled or did not have any disparity assigned to them. This method provides accurate results in 3D reconstruction and morphology estimation of complex structures like rose bushes. Due to the lack of datasets of rose bushes and their segmentation, we also made three large datasets. Two of them have real roses that were manually labelled, and the third one was created using a scene modeler and 3D rendering software. The last dataset aims to capture diversity, realism and obtain different types of labelling. The second contribution provides a strategy for real-time rose pruning using visual servoing of a robotic arm and our previous approach. Current methods obtain the structure of the plant and plan the cutting trajectory using only a global planner and assume a constant background. Our method works in real environments and uses visual feedback to refine the location of the cutting targets and modify the planned trajectory. The proposed visual servoing allows the robot to reach the cutting points 94% of the time. This is an improvement compared to only using a global planner without visual feedback, which reaches the targets 50% of the time. To the best of our knowledge, this is the first robot able to prune a complete rose bush in a natural environment. Recent deep learning image segmentation and disparity estimation networks provide accurate results. However, most of these methods are computationally expensive, which makes them impractical for real-time tasks. Our third contribution uses multi-task learning to learn the image segmentation and disparity estimation together end-to-end. The experiments show that our network has at most 1/3 of the parameters of the state-of-the-art of each individual task and still provides competitive results. The last contribution explores the area of scene understanding using 3D data. Recent approaches use point-based networks to do point cloud segmentation and find local relations between points using only the latent features provided by the network, omitting the geometric information from the point clouds. Our approach aggregates the geometric information into the network. Given that the geometric and latent features are different, our network also uses a two-headed attention mechanism to do local aggregation at the latent and geometric level. This additional information helps the network to obtain a more accurate semantic segmentation, in real point cloud data, using fewer parameters than current methods. Overall, the method obtains the state-of-the-art segmentation in the real datasets S3DIS with 69.2% and competitive results in the ModelNet40 and ShapeNetPart datasets

    Real-time fMRI connectivity neurofeedback for modulation of the motor system

    Get PDF
    Advances in functional magnetic resonance imaging (fMRI) have enabled an understanding of the neural mechanisms underlying human brain functions such as motor functions. In recent decades fMRI, which is a non-invasive and highresolution technique, has been used to investigate the functions of the human brain using the blood oxygen level dependent (BOLD) response as an indirect measurement of brain neural activities. Real-time fMRI (rt-fMRI) has been used as neurofeedback to enable individuals to regulate their neural activity to achieve improvements in their health and performance, such as their motor performance. Neurofeedback can be defined as the measurement of the neural activity of a participant that is presented to them as visual or auditory signals that enable self-regulation of neural activity. Rt-fMRI has also been used to provide feedback about the connectivity between brain regions. Such connectivity neurofeedback can be a more effective feedback strategy than providing feedback from a single region. Recently, connectivity neurofeedback has been explored to examine how functional connectivity of cortical areas and subcortical areas of the brain can be modulated. Enhancing connectivity between cortical and subcortical regions holds promise for the improvement of performance, particularly motor function performance. The aim of this PhD research was to modulate connectivity neurofeedback by using real-time fMRI neurofeedback (rt-fMRI-NF) between brain regions and to investigate whether any possible enhancement in the activation due to a successful fMRI-NF will translate into changes in behavioural measures. The thesis research began with experimental work to establish the experimental paradigm. This included work, using fMRI, to develop and test localisers for different motor areas such as primary motor cortex (M1), supplementary motor cortex (SMA), the motor cerebellum and the motor thalamus. The results showed that the execution of actions, such as hand clenching, can be used to functionally activate many motor areas including M1, SMA and the cerebellum. The motor thalamus was localised using a motor thalamus mask that was created offline using the Talairach atlas. All localisers tested in this research were feasible and able to be used for applications such as rt-fMRI-NF research to define the regions of interest. The first rt-fMRI connectivity neurofeedback experimental study of this thesis was conducted to determine whether healthy participants can use neurofeedback to enhance the connectivity between M1 and the thalamus using rt-fMRI. It also aimed to investigate whether successful rt-fMRI-NF of M1- thalamus connectivity could translate into changes in behavioural measures. For this purpose, the behavioural tasks were conducted before and after each MRI session. Two behavioural tasks were used in this experiment: Go/No Go and switching tasks. The results of this experiment showed a significant increase in connectivity neurofeedback in the experimental group (M1-thalamus), hence, rt-fMRI-NF is a useful tool to modulate functional connectivity between M1 and the thalamus using motor imagery and it facilitates the learning by participants of new mental strategies to upregulate M1-thalamus connectivity. The behavioural tasks showed a significant reduction in the switching time in the experimental group while Go/No Go task did not show a significant reduction in the reaction time in the experimental group. The second rt-fMRI connectivity neurofeedback experimental study of this thesis was conducted to investigate the ability of neurofeedback to modulate M1-cerebellum connectivity using motor imagery based rt-fMRI-NF. The results of this research showed enhanced connectivity between M1 and the cerebellum in each participant. However, this enhancement was not statistically significant. In summary, this PhD thesis extends and validates the usefulness of connectivity neurofeedback using motor imagery based rt-fMRI to modulate the correlation between cortical and subcortical brain regions. Successful modulation using this technique has the potential to lead to an enhancement in motor functions. Thereby, the results of this PhD research may help to advance connectivity neurofeedback for use as a supplementary treatment for many brain disorders such as stroke recovery and Parkinson’s disease

    Waveguide Quantum Electrodynamics in Superconducting Circuits

    Get PDF
    Achieving an efficient interface of light and matter has been a principal goal in the field of quantum optics. A burgeoning paradigm in the study of light-matter interface is waveguide quantum electrodynamics (QED), where quantum emitters are coupled to a common one-dimensional waveguide channel. In this scenario, cooperative effects among quantum emitters emerge as a result of real and virtual exchange of photons, giving rise to new ways of controlling matter. Superconducting quantum circuits offer an exciting platform to study quantum optics in the microwave domain with artificial quantum emitters interfaced to engineered photonic structures on chip. Beyond revisiting the experiments performed in atom-based platforms, superconducting circuits enable exploration of novel regimes in quantum optics that are otherwise prohibitively challenging to achieve. Moreover, the unprecedented level of control over individual quantum degrees of freedom and good scalability of the system provided by state-of-the-art circuit QED toolbox set a promising direction towards the study of quantum many-body phenomena. In this thesis, I discuss waveguide QED experiments performed in superconducting quantum circuits where transmon qubits are coupled to engineered microwave waveguides. Employing the high flexibility and controllability of superconducting quantum circuits, we realize and explore various schemes for generating waveguide-mediated interactions between superconducting qubits. We also demonstrate an intermediate-scale quantum processor based on a dispersive waveguide QED system involving ten superconducting qubits, exploring quantum many-body dynamics in a highly controllable fashion. The work described in the thesis marks an important step towards the construction of scalable architectures for quantum simulation of many-body models and realization of efficient coupling schemes for quantum computation.</p

    Investigation of time-resolved volumetric MRI to enhance MR-guided radiotherapy of moving lung tumors

    Get PDF
    In photon radiotherapy of lung cancer, respiratory-induced motion introduces systematic and statistical uncertainties in treatment planning and dose delivery. By integrating magnetic resonance imaging (MRI) in the treatment planning process in MR-guided radiotherapy (MRgRT), uncertainties in target volume definition can be reduced with respect to state-of-the-art X-ray-based approaches. Furthermore, MR-guided linear accelerators (MR-Linacs) offer dose delivery with enhanced accuracy and precision through daily treatment plan adaptation and gated beam delivery based on real-time MRI. Today, the potential of MRgRT of moving targets is, however, not fully exploited due to the lack of time-resolved four-dimensional MRI (4D-MRI) in clinical practice. Therefore, the aim of this thesis was to develop and experimentally validate new methods for motion characterization and estimation with 4D-MRI for MRgRT of lung cancer. Different concepts were investigated for all phases of the clinical workflow - treatment planning, beam delivery, and post-treatment analysis. Firstly, a novel internal target volume (ITV) definition method based on the probability-of-presence of moving tumors derived from real-time 4D-MRI was developed. The ability of the ITVs to prospectively account for changes occurring over the course of several weeks was assessed in retrospective geometric analyses of lung cancer patient data. Higher robustness of the probabilistic 4D-MRI-based ITVs against interfractional changes was observed compared to conventional target volumes defined with four-dimensional computed tomography (4D-CT). The study demonstrated that motion characterization over extended times enabled by real-time 4D-MRI can reduce systematic and statistical uncertainties associated with today’s standard workflow. Secondly, experimental validation of a published motion estimation method - the propagation method - was conducted with a porcine lung phantom under realistic patient-like conditions. Estimated 4D-MRIs with a temporal resolution of 3.65 Hz were created based on orthogonal 2D cine MRI acquired at the scanner unit of an MR-Linac. A comparison of these datasets with ground truth respiratory-correlated 4D-MRIs in geometric analyses showed that the propagation method can generate geometrically accurate estimated 4D-MRIs. These could decrease target localization errors and enable 3D motion monitoring during beam delivery at the MR-Linac in the future. Lastly, the propagation method was extended to create continuous time-resolved estimated synthetic CTs (tresCTs). The proposed method was experimentally tested with the porcine lung phantom, successively imaged at a CT scanner and an MR-Linac. A high agreement of the images and corresponding dose distributions of the tresCTs and measured ground truth 4D-CTs was found in geometric and dosimetric analyses. The tresCTs could be used for post-treatment time-resolved reconstruction of the delivered dose to guide treatment adaptations in the future. These studies represent important steps towards a clinical application of time-resolved 4D-MRI methods for enhanced MRgRT of lung tumors in the near future

    Three-dimensional visualisation and quantitative characterisation of fossil fuel flames using tomography and digital imaging techniques

    Get PDF
    This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the flame. Suggestions for future development of the technology are also reported

    Experimental Study of the Urea-Water Solution Injection Process

    Full text link
    [ES] La industria y la comunidad investigadora están trabajando para desarrollar herramientas y tecnologías que contribuyan a la reducción de emisiones contaminantes. Uno de los sectores afectados por la normativa anticontaminación es el transporte. Nuevas tecnologías están evolucionando, especialmente componentes de los sistemas de inyección, diseño de cámaras de combustión, elementos de postratamiento, la hibridación, entre otros. Los sistemas de reducción catalítica selectiva (SCR) han sido una de las claves para alcanzar los objetivos de las normativas de emisiones, especialmente de Óxidos Nitrosos (NO). La tecnología SCR se emplea para eliminar los NO presentes en los gases de escape de un motor. El proceso de inyección de la solución de urea-agua (UWS) determina las condiciones iniciales para la mezcla y evaporación del fluido en el sistema de reducción catalítica selectiva. Para un correcto funcionamiento, el inyector UWS debe dosificar una cantidad adecuada de líquido en el tubo de escape para evitar la formación de depósitos y garantizar la eficiencia del post-tratamiento. Esta tarea requiere la caracterización hidráulica del inyector y de la evolución del spray. El objetivo de esta tesis es la comprensión de los procesos de inyección de solución urea-agua en condiciones de funcionamiento realistas, similares a las que se encuentran en un tubo de escape de motor. Para ello, este trabajo se centra en el desarrollo de nuevas instalaciones experimentales que permitan realizar la caracterización hidráulica combinando medidas de flujo de cantidad de movimiento y masa inyectada. Posteriormente, el chorro de UWS se visualiza aplicando técnicas ópticas a varios niveles de temperatura y flujo másico de aire, en un banco de pruebas diseñado para este propósito. En cuanto a la caracterización hidráulica del inyector de UWS, el método se basa en medir el flujo de cantidad de movimiento para comprender la influencia de diferentes variables como el fluido inyectado, la presión de inyección, entre otros. Las medidas se realizaron utilizando una instalación experimental desarrollada en CMT-Motores Térmicos para la determinación del flujo de cantidad de movimiento, la cual fue modificada para cumplir con los requisitos de operación de estos inyectores. Además, la masa inyectada se obtiene experimentalmente para las mismas condiciones de funcionamiento. La metodología propuesta permitió calcular el flujo másico de estos atomizadores de baja presión, así como el coeficiente de descarga, que son datos útiles para futuras actividades de modelado. Se diseñó una instalación experimental para estudiar la atomización del fluido UWS en condiciones similares a las del tubo de escape del motor. La evolución del spray se caracterizó desde el punto de vista macroscópico, desarrollando una metodología para la determinación de la penetración y del ángulo del chorro. El método se basa en la configuración óptica conocida como diffused-back-light en una configuración de campo lejano. La penetración del spray se dividió en dos zonas: el inicio del chorro y el cuerpo principal. Se observó que la parte inicial del spray inyectado no se ve particularmente afectada por la presión de inyección sino más bien por la temperatura de la camisa de enfriamiento del inyector. El proceso de atomización se investigó mediante la misma técnica de diagnóstico óptico, diffused-back-lighting, acoplado a una lente microscópica especial. Se cuantificó la distribución del diámetro de las gotas y la velocidad de las gotas (en los componentes axial y tangencial) del chorro, en diferentes niveles de presión de inyección y flujo de aire. Se empleó una cámara de alta velocidad para capturar las imágenes de la fase líquida, comparando las gotas de líquido atomizado en tres regiones diferentes del chorro. Como resultado de este estudio, se puede observar que una mayor presión de inyección produce más gotas con diámetros menores favoreciendo el proceso de atomización.[CA] Noves tecnologies estan evolucionant, especialment components dels sistemes d'injecció, disseny de cambres de combustió, elements de posttractament, la hibridació, entre altres. Els sistemes de reducció catalítica selectiva (SCR) han sigut una de les claus per a aconseguir els objectius de les normatives d'emissions, especialment d'Òxids Nitrosos (NO). La tecnologia SCR s'empra per a eliminar els NO presents en els gasos de fuita d'un motor. El procés d'injecció de la solució d'urea aigua (UWS) determina les condicions inicials per a la mescla i evaporació del fluid en el sistema de reducció catalítica selectiva. Per a un correcte funcionament, l'injector UWS ha de dosar una quantitat adequada de líquid en el tub d'escapament per a evitar la formació de depòsits i garantir l'eficiència del post-tractament. Aquesta tasca requereix la caracterització hidràulica de l'injector i de l'evolució de l'esprai. L'objectiu d'aquesta tesi és la comprensió dels processos d'injecció de solució urea-aigua en condicions de funcionament realistes, similars a les que es troben en un tub d'escapament de motor. Per a això, aquest treball se centra en el desenvolupament de noves instal·lacions experimentals que permeten realitzar la caracterització hidràulica combinant mesures de flux de quantitat de moviment i massa injectada. Posteriorment, el doll de UWS es visualitza aplicant tècniques òptiques a diversos nivells de temperatura i flux màssic d'aire, en un banc de proves dissenyat per a aquest propòsit. Quant a la caracterització hidràulica de l'injector de UWS, el mètode es basa a mesurar el flux de quantitat de moviment per a comprendre la influencia de diferents variables com el fluid injectat, la pressió d'injecció, la contrapressió i la temperatura del sistema sobre les característiques del flux. Les mesures es van realitzar utilitzant una instal·lació experimental desenvolupada en CMT-Motores Térmicos per a la determinació del flux de quantitat de moviment, la qual va ser modificada per a complir amb els requisits d'operació d'aquests injectors. A més, la massa injectada s'obté experimentalment per a les mateixes condicions de funcionament. La metodologia proposada va permetre calcular el flux màssic d'aquests atomitzadors de baixa pressió, així com el coeficient de descàrrega, que són dades útils per a futures activitats de modelatge. Es va dissenyar una instal·lació experimental per a estudiar l'atomització del fluid UWS en condicions similars a les del tub d'escapament del motor. L'evolució de l'esprai es va caracteritzar des del punt de vista macroscòpic, desenvolupant una metodologia per a la determinació de la penetració i de l'angle del doll. El mètode es basa en la configuració òptica coneguda com diffusedback-light en una configuració de camp llunyà. La penetració de l'esprai es va dividir en dues zones: l'inici del doll i el cos principal. Es va observar que la part inicial de l'esprai injectat no es veu particularment afectada per la pressió d'injecció sinó més aviat per la temperatura de la camisa de refredament de l'injector. El procés d'atomització es va investigar mitjançant la mateixa tècnica de diagnòstic òptic, diffused-back-lighting, acoblat a una lent microscòpica especial. Es va quantificar la distribució del diàmetre de les gotes i la velocitat de les gotes (en els components axial i tangencial) del doll, en diferents nivells de pressió d'injecció i flux d'aire. Es va emprar una càmera d'alta velocitat per a capturar les imatges de la fase líquida, comparant les gotes de líquid atomitzat en tres regions diferents del doll: la primera prop de l'eixida de la tovera i les altres dues a la regió desenvolupada de l'esprai, una alineada amb l'eix de l'injector i l'altra en la perifèria del mateix. Com a resultat d'aquest estudi, es pot observar que una major pressió d'injecció produeix més gotes amb diàmetres menors afavorint el procés d'atomització.[EN] One of the sectors affected by the anti-pollution regulations is the transportation, since it is responsible for around 20% of the green house gases emissions production. New technologies are evolving, especially subsystems as fuel injection components, combustion design, after-treatment and hybridization. The SCR has been one of the most important to reach the emission targets, specially for Nitrous Oxides (NO). The SCR technology is employed in the elimination of the NO present in the exhaust gases of a combustion engine. The injection process of the urea-water solution (UWS) determines the initial conditions for the mixing and evaporation of the fluid in the selective catalytic reduction system. For a proper operation, the UWS injector must dose an adequate amount of liquid into the exhaust pipe to avoid deposit formation and to guarantee the SCR system efficiency. This task requires the knowledge of the performance of the injector and the evolution of the spray. The goal of this thesis is the comprehension of the urea-water solution injection processes under realistic operating conditions, similar to those of an engine exhaust pipe. To this end, this work focuses on the development of new experimental facilities that enable to perform the hydraulic characterization combining momentum flux measurements and injected mass. Afterwards, the UWS jet is visualized by applying optical techniques at various levels of air temperature and mass flow, in a novel test rig designed for this purpose. Regarding to the hydraulic performance of the UWS injector, the approach is based on measuring the spray momentum flux in order to understand the influence of different variables as injected mass, injection pressure, back pressure and cooling temperature on the flow characteristics. The measurements were carried out using an experimental facility developed at CMT-Motores Térmicos for the determination of spray momentum flux, where the configuration of the system was customized to fulfill the injector operation requirements. Also, the injected mass is obtained experimentally for the same operating conditions. The proposed methodology allowed to calculate the mass flow rate of this low pressure atomizers and the discharge coefficients, which are useful data for future computer modeling activities. A dedicated test facility was designed to study UWS spray under conditions that resemble those of the engine exhaust pipe. The liquid spray evolution is characterized from the macroscopic point of view, developing a methodology for the determination of the spray penetration and spreading angle. The method is based on the optical setup known as back-light in a far-field configuration. The spray penetration was divided in two zones, the spray burst and the body, where it was observed that the initial part of the injected spray is not particularly affected by the injection pressure but was rather influenced by the cooling temperature of the injector. Besides, the liquid atomization process of the UWS dosing system is investigated using optical diagnosis through back-light imaging coupled with a special lens. The droplet diameter distribution and the droplet velocity (in the injector axial and tangential components) of the liquid spray are quantified under different air flow and injection pressure levels. A high-speed camera was used for capturing the liquid phase images, comparing the atomized liquid drops in three different regions of the plume: the first one near the nozzle exit, and the other two in the developed region of the spray, one aligned with the injector axis and the other at the spray periphery. The results of this study demonstrated that injection pressure produces more droplets with smaller diameters favoring the atomization process.Moreno, AE. (2022). Experimental Study of the Urea-Water Solution Injection Process [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181637TESI
    corecore