73,279 research outputs found

    The polar clasps of a bank vole PrP(168--176) prion protofibril revisiting

    Get PDF
    On 2018-01-17 two electron crystallography structures (with PDB entries 6AXZ, 6BTK) on a prion protofibril of bank vole PrP(168-176) (a segment in the PrP β\beta2-α\alpha2 loop) were released into the PDB Bank. The paper published by [Nat Struct Mol Biol 25(2):131-134 (2018)] reports some polar clasps for these two crystal structures, and "an intersheet hydrogen bond between Tyr169 and the backbone carbonyl of Asn171 on an opposing strand." - this hydrogen bond is not between the neighbouring Chain B and Chain A directly. In addition, by revisiting the polar clasps, we found another two hydrogen bonds ([email protected]@OE1, [email protected]@N) between the strand A of one sheet and the opposing strand B of the mating sheet. For the neighbouring two single β\beta-sheets AB, the two new hydrogen bonds are completely different from the experimental one (an intersheet hydrogen bond between Tyr169 and the backbone carbonyl of Asn171 on an opposing strand) in [Nat Struct Mol Biol 25(2):131-134 (2018)]

    The role of different sliding resistances in limit analysis of hemispherical masonry domes

    Get PDF
    A limit analysis method for masonry domes composed of interlocking blocks with non-isotropic sliding resistance is under development. This paper reports the first two steps of that work. It first introduces a revision to an existing limit analysis approach using the membrane theory with finite hoop stresses to find the minimum thickness of a hemispherical dome under its own weight and composed of conventional blocks with finite isotropic friction. The coordinates of an initial axisymmetric membrane surface are the optimization variables. During the optimization, the membrane satisfies the equilibrium conditions and meets the sliding constraints where intersects the block interfaces. The results of the revised procedure are compared to those obtained by other approaches finding the thinnest dome. A heuristic method using convex contact model is then introduced to find the sliding resistance of the corrugated interlocking interfaces. Sliding of such interfaces is constrained by the Coulomb’s friction law and by the shear resistance of the locks keeping the blocks together along two orthogonal directions. The role of these two different sliding resistances is discussed and the heuristic method is applied to the revised limit analysis method

    Cooperative co-evolution of GA-based classifiers based on input increments

    Get PDF
    Genetic algorithms (GAs) have been widely used as soft computing techniques in various applications, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is proposed in the application domain of pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA. Some analysis and discussions on ECCGA and possible improvement are also presented
    corecore