8 research outputs found

    Double square waveguide directional coupler for polarimeter calibration

    Get PDF
    A novel full-band square waveguide coupler design based on directional couplers which couple the TE10 and TE01 orthogonal modes in a square waveguide is presented. This waveguide coupler is aimed at the calibration of polarization receivers. This is composed of a pair of rectangular waveguide directional couplers, which are rotated 90° between them and both are coupled to the main square waveguide through each one of the square section walls. The coupler covers the full frequency band from 10 to 18.9 GHz. It has inherent low cross-polarization, which allows obtaining any known elliptically polarized wave at a square waveguide when a signal is applied to the couplers. The fabricated prototype of this coupler exhibits 31 dB of coupling, with flatness of ±3.8 dB and excellent cross polarization better than 50 dB over the whole band.This work was supported by the Spanish Ministry of Economy and Competitiveness under Grant ESP2015-70646-C2-2-R

    Radiometric Active Indoor Imaging in the W-Band

    Get PDF
    Millimeter wave passive imaging systems constitute a good compromise between resolution and penetration depth for a variety of imaging applications. In an outdoor scenario, the cold sky radiation, interacting with the reflectivity characteristics of the targets, constitutes the main source of contrast in the acquired images. In indoor applications such a source is not available, and higher thermal sensitivity is required. Alternatively, one has to provide an artificial illumination to the scene in order to increase its dynamic range. The implementation of an active source for a passive radiometer can, under certain conditions, increase the contrast of the images acquired and add extra information to the measurement. With such a setup, outdoor systems can be used for indoor observations (the absence of cold sky radiation is compensated with active illumination). The subject of our study is to better understand which kind of source and which setup can provide a diffuse illumination over the targets. This topic was investigated by conducting observations of various indoor scenes with two radiometers in the W-Band, using noise and continuous wave (CW) sources as illumination. In this paper we present the results achieved and our conclusions in order to provide an efficient illumination for indoor environment

    A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Get PDF
    This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW) radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques

    Design and Implementation of High Gain 60 GHz Antennas for Imaging/Detection Systems

    Get PDF
    Recently, millimeter wave (MMW) imaging detection systems are drawing attention for their relative safety and detection of concealed objects. Such systems use safe non-ionizing radiation and have great potential to be used in several applications such as security scanning and medical screening. Antenna probes, which enhance system performance and increase image resolution contrast, are primarily used in MMW imaging sensors. The unlicensed 60 GHz band is a promising band, due to its wide bandwidth, about 7 GHz (57 - 64 GHz), and lack of cost. However, at 60 GHz the propagation loss is relatively high, creating design challenges for operating this band in MMW screening. A high gain, low profile, affordable, and efficient probe is essential for such applications at 60 GHz. This thesis’s focus is on design and implementation of high gain MMW probes to optimize the performance of detection/imaging systems. First, single-element broadside radiation microstrip antennas and novel probes of endfire tapered slot high efficient antennas are presented. Second, a 57-64 GHz, 1 × 16-element beam steering antenna array with a low-cost piezoelectric transducer controlled phase shifter is presented. Then, a mechanical scanner is designed specifically to test proposed antenna probes utilizing low-power 60 GHz active monostatic transceivers. The results for utilizing proposed 60 GHz probes show success in detecting and identifying concealed weapons and explosives in liquids or plastics. As part of the first research theme, a 60 GHz circular patch-fed high gain dielectric lens antenna is presented, where the prototype’s measured impedance bandwidth reaches 3 GHz and a gain of 20 dB. A low cost, 60 GHz printed Yagi antenna array was designed, optimized, fabricated and tested. New models of the antipodal Fermi tapered slot antenna (AFTSA) with a novel sine corrugated (SC) shape are designed, and their measured results are validated with simulated ones. The AFTSA-SC produces a broadband and high efficiency pattern with the capacity for high directivity for all ISM-band. Another new contribution is a novel dual-polarized design for AFTSA-CS, using a single feed with a pair of linearly polarized antennas aligned orthogonally in a cross-shape. Furthermore, a novel 60 GHz single feed circularly polarized (CP) AFTSA-SC is modeled to radiate in the right-hand circularly polarized antenna (RHCP). A RHCP axial ratio bandwidth of < 3dB is maintained from 59 to 63 GHz. In addition, a high gain, low cost 60 GHz Multi Sin-Corrugations AFTSA loaded with a grooved spherical lens and in the form of three elements to operate as the beam steering antenna is presented. These probes show a return loss reduction and sidelobes and backlobe suppression and are optimized for a 20 dB or higher gain and radiation efficiency of ~90% at 60 GHz. The second research theme is implementing a 1 × 16-element beam steering antenna array with a low-cost piezoelectric transducer (PET) controlled phase shifter. A power divider with a triangular feed which reduces discontinuity from feed lines corners is introduced. A 1 × 16-element array is fabricated using 60 GHz AFTSA-SC antenna elements and showed symmetric E-plane and H-plane radiation patterns. The feed network design is surrounded by electromagnetic band-gap (EBG) structures to reduce surface waves and coupling between feed lines. The design of a circularly polarized 1 × 16-element beam steering phased array with and without EBG structures also investigated. A target detection investigation was carried out utilizing the proposed 60GHz antennas and their detection results are compared to those of V-band standard gain horn (SGH). System setup and signal pre-processing principle are introduced. The multi-corrugated MCAFTSA-SC probe is evaluated with the imaging/detection system for weapons and liquids concealed by clothing, plywood, and plastics. Results show that these items are detectable in clear 2D image resolution. It is believed that the 60 GHz imaging/detection system results using the developed probes show potential of detecting threatening objects through screening of materials and public

    Anàlisi i disseny d'un reflector per banda W

    Get PDF
    Les ones passives mil·limètriques (30 a 300GHz) tenen la peculiaritat de propagar-se en medis com la boira o la roba, a diferència del rang visible o l'infraroig. D'aquesta peculiaritat, surt l'interès de reproduir imatges per diverses aplicacions (seguretat, vigilància, etc...). És per aquest motiu que es treballa en el disseny d'un reflector per aquest tipus d'aplicació, treballant a una de les finestres de propagació d'aquest rang, la de la banda W. Es dissenyen i analitzen tres tipus de reflector: parabòlic simètric, offset i Cassegrain. D'aquests, s'estudien les seves figures de mèrit i directivitats buscant que aquestes siguin el més elevades possibles per obtenir una bona resolució, així com l'escaneig de l'escena de la qual es vol obtenir una imatge, veient aquí els efectes de les aberracions més comunes.Las ondas pasivas milimétricas (30 a 300GHz) tienen la peculiaridad de propagarse en medios como la niebla o la ropa, a diferencia del rango visible o el infrarrojo. De esta peculiaridad, sale el interés de reproducir imágenes para diversas aplicaciones (seguridad, vigilancia, etc...). Es por este motivo que se trabaja en el diseño de un reflector para este tipo de aplicación, trabajando en una de las ventanas de propagación de este rango, la de la banda W. Se diseñan y analizan tres tipos de reflector: parabólico simétrico, offset y Cassegrain. Se estudian sus figuras de mérito y directividades, buscando que estas sean lo más elevadas posibles para obtener una buena resolución, así como el escaneo de la escena de la cual se quiere obtener una imagen, viendo aquí los efectos de las aberraciones más comunes.Millimeter waves (30 to 300 GHz) have the peculiarity to propagate through fog and clothing, unlike infrared and visual range. Due to this peculiarity, there is an interest to reproduce images for various applications (security, surveillance,…). For this reason we works in a design of a reflector for that kind of applications, working in one of the propagation window of this range, W band. We design and analyze three types of reflector: parabolic symmetric, offset and Cassegrain. We discuss their merit figures and directivities, searching for the highest possible to obtain a good resolution, as well as the scanning of a scene which we want to obtain an image, viewing here the most common effects of aberrations

    NASA Tech Briefs, April 1992

    Get PDF
    Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    The Fully Polarimetric Imaging Radiometer SPIRA at 91 GHz

    No full text

    NASA university program management information system, FY 1985

    Get PDF
    The University Program Report provides current information and related statistics for approximately 4200 grants/contracts/cooperative agreements active during the reporting period. NASA Field Centers and certain Headquarters Program Offices provide funds for those research and development activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-University relationship, frequently denoted, collectively, as NASA's University Program
    corecore