27,059 research outputs found

    Renormalization group study of the four-body problem

    Full text link
    We perform a renormalization group analysis of the non-relativistic four-boson problem by means of a simple model with pointlike three- and four-body interactions. We investigate in particular the unitarity point where the scattering length is infinite and all energies are at the atom threshold. We find that the four-body problem behaves truly universally, independent of any four-body parameter. Our findings confirm the recent conjectures of Platter et al. and von Stecher et al. that the four-body problem is universal, now also from a renormalization group perspective. We calculate the corresponding relations between the four- and three-body bound states, as well as the full bound state spectrum and comment on the influence of effective range corrections.Comment: 11 pages, 6 figures; v2: revised and published versio

    Efimov physics from the functional renormalization group

    Full text link
    Few-body physics related to the Efimov effect is discussed using the functional renormalization group method. After a short review of renormalization in its modern formulation we apply this formalism to the description of scattering and bound states in few-body systems of identical bosons and distinguishable fermions with two and three components. The Efimov effect leads to a limit cycle in the renormalization group flow. Recently measured three-body loss rates in an ultracold Fermi gas 6^6Li atoms are explained within this framework. We also discuss briefly the relation to the many-body physics of the BCS-BEC crossover for two-component fermions and the formation of a trion phase for the case of three species.Comment: 28 pages, 13 figures, invited contribution to a special issue of "Few-Body Systems" devoted to Efimov physics, published versio

    Efimov effect from functional renormalization

    Full text link
    We apply a field-theoretic functional renormalization group technique to the few-body (vacuum) physics of non-relativistic atoms near a Feshbach resonance. Three systems are considered: one-component bosons with U(1) symmetry, two-component fermions with U(1)\times SU(2) symmetry and three-component fermions with U(1) \times SU(3) symmetry. We focus on the scale invariant unitarity limit for infinite scattering length. The exact solution for the two-body sector is consistent with the unitary fixed point behavior for all considered systems. Nevertheless, the numerical three-body solution in the s-wave sector develops a limit cycle scaling in case of U(1) bosons and SU(3) fermions. The Efimov parameter for the one-component bosons and the three-component fermions is found to be approximately s=1.006, consistent with the result of Efimov.Comment: 21 pages, 6 figures, minor changes, published versio

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Pascual Jordan's resolution of the conundrum of the wave-particle duality of light

    Full text link
    In 1909, Einstein derived a formula for the mean square energy fluctuation in black-body radiation. This formula is the sum of a wave term and a particle term. In a key contribution to the 1925 Dreimaennerarbeit with Born and Heisenberg, Jordan showed that one recovers both terms in a simple model of quantized waves. So the two terms do not require separate mechanisms but arise from a single consistent dynamical framework. Several authors have argued that various infinities invalidate Jordan's conclusions. In this paper, we defend Jordan's argument against such criticism. In particular, we note that the fluctuation in a narrow frequency range, which is what Jordan calculated, is perfectly finite. We also note, however, that Jordan's argument is incomplete. In modern terms, Jordan calculated the quantum uncertainty in the energy of a subsystem in an energy eigenstate of the whole system, whereas the thermal fluctuation is the average of this quantity over an ensemble of such states. Still, our overall conclusion is that Jordan's argument is basically sound and that he deserves credit for resolving a major conundrum in the development of quantum physics.Comment: This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut fuer Wissenschaftsgeschichte and the Fritz Haber Institut in Berli
    • …
    corecore