227,757 research outputs found

    Sparse Generalized Multiscale Finite Element Methods and their applications

    Full text link
    In a number of previous papers, local (coarse grid) multiscale model reduction techniques are developed using a Generalized Multiscale Finite Element Method. In these approaches, multiscale basis functions are constructed using local snapshot spaces, where a snapshot space is a large space that represents the solution behavior in a coarse block. In a number of applications (e.g., those discussed in the paper), one may have a sparsity in the snapshot space for an appropriate choice of a snapshot space. More precisely, the solution may only involve a portion of the snapshot space. In this case, one can use sparsity techniques to identify multiscale basis functions. In this paper, we consider two such sparse local multiscale model reduction approaches. In the first approach (which is used for parameter-dependent multiscale PDEs), we use local minimization techniques, such as sparse POD, to identify multiscale basis functions, which are sparse in the snapshot space. These minimization techniques use l1l_1 minimization to find local multiscale basis functions, which are further used for finding the solution. In the second approach (which is used for the Helmholtz equation), we directly apply l1l_1 minimization techniques to solve the underlying PDEs. This approach is more expensive as it involves a large snapshot space; however, in this example, we can not identify a local minimization principle, such as local generalized SVD

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Local Improvements to Reduced-Order Approximations of Optimal Control Problems Governed by Diffusion-Convection-Reaction Equation

    Full text link
    We consider the optimal control problem governed by diffusion convection reaction equation without control constraints. The proper orthogonal decomposition(POD) method is used to reduce the dimension of the problem. The POD method may be lack of accuracy if the POD basis depending on a set of parameters is used to approximate the problem depending on a different set of parameters. We are interested in the perturbation of diffusion term. To increase the accuracy and robustness of the basis, we compute three bases additional to the baseline POD. The first two of them use the sensitivity information to extrapolate and expand the POD basis. The other one is based on the subspace angle interpolation method. We compare these different bases in terms of accuracy and complexity and investigate the advantages and main drawbacks of them.Comment: 19 pages, 5 figures, 2 table
    • …
    corecore