20,418 research outputs found

    A Fragment of Dependence Logic Capturing Polynomial Time

    Get PDF
    In this paper we study the expressive power of Horn-formulae in dependence logic and show that they can express NP-complete problems. Therefore we define an even smaller fragment D-Horn* and show that over finite successor structures it captures the complexity class P of all sets decidable in polynomial time. Furthermore we study the question which of our results can ge generalized to the case of open formulae of D-Horn* and so-called downwards monotone polynomial time properties of teams

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    More on Descriptive Complexity of Second-Order HORN Logics

    Full text link
    This paper concerns Gradel's question asked in 1992: whether all problems which are in PTIME and closed under substructures are definable in second-order HORN logic SO-HORN. We introduce revisions of SO-HORN and DATALOG by adding first-order universal quantifiers over the second-order atoms in the bodies of HORN clauses and DATALOG rules. We show that both logics are as expressive as FO(LFP), the least fixed point logic. We also prove that FO(LFP) can not define all of the problems that are in PTIME and closed under substructures. As a corollary, we answer Gradel's question negatively

    Minimization for Generalized Boolean Formulas

    Full text link
    The minimization problem for propositional formulas is an important optimization problem in the second level of the polynomial hierarchy. In general, the problem is Sigma-2-complete under Turing reductions, but restricted versions are tractable. We study the complexity of minimization for formulas in two established frameworks for restricted propositional logic: The Post framework allowing arbitrarily nested formulas over a set of Boolean connectors, and the constraint setting, allowing generalizations of CNF formulas. In the Post case, we obtain a dichotomy result: Minimization is solvable in polynomial time or coNP-hard. This result also applies to Boolean circuits. For CNF formulas, we obtain new minimization algorithms for a large class of formulas, and give strong evidence that we have covered all polynomial-time cases

    Complexity of Nested Circumscription and Nested Abnormality Theories

    Full text link
    The need for a circumscriptive formalism that allows for simple yet elegant modular problem representation has led Lifschitz (AIJ, 1995) to introduce nested abnormality theories (NATs) as a tool for modular knowledge representation, tailored for applying circumscription to minimize exceptional circumstances. Abstracting from this particular objective, we propose L_{CIRC}, which is an extension of generic propositional circumscription by allowing propositional combinations and nesting of circumscriptive theories. As shown, NATs are naturally embedded into this language, and are in fact of equal expressive capability. We then analyze the complexity of L_{CIRC} and NATs, and in particular the effect of nesting. The latter is found to be a source of complexity, which climbs the Polynomial Hierarchy as the nesting depth increases and reaches PSPACE-completeness in the general case. We also identify meaningful syntactic fragments of NATs which have lower complexity. In particular, we show that the generalization of Horn circumscription in the NAT framework remains CONP-complete, and that Horn NATs without fixed letters can be efficiently transformed into an equivalent Horn CNF, which implies polynomial solvability of principal reasoning tasks. Finally, we also study extensions of NATs and briefly address the complexity in the first-order case. Our results give insight into the ``cost'' of using L_{CIRC} (resp. NATs) as a host language for expressing other formalisms such as action theories, narratives, or spatial theories.Comment: A preliminary abstract of this paper appeared in Proc. Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 169--174. Morgan Kaufmann, 200
    • …
    corecore