11 research outputs found

    The evolutionary game of pressure (or interference), resistance and collaboration

    Get PDF
    In the past few years, volunteers have produced geographic information of different kinds, using a variety of different crowdsourcing platforms, within a broad range of contexts. However, there is still a lack of clarity about the specific types of tasks that volunteers can perform for deriving geographic information from remotely sensed imagery, and how the quality of the produced information can be assessed for particular task types. To fill this gap, we analyse the existing literature and propose a typology of tasks in geographic information crowdsourcing, which distinguishes between classification, digitisation and conflation tasks. We then present a case study related to the “Missing Maps” project aimed at crowdsourced classification to support humanitarian aid. We use our typology to distinguish between the different types of crowdsourced tasks in the project and choose classification tasks related to identifying roads and settlements for an evaluation of the crowdsourced classification. This evaluation shows that the volunteers achieved a satisfactory overall performance (accuracy: 89%; sensitivity: 73%; and precision: 89%). We also analyse different factors that could influence the performance, concluding that volunteers were more likely to incorrectly classify tasks with small objects. Furthermore, agreement among volunteers was shown to be a very good predictor of the reliability of crowdsourced classification: tasks with the highest agreement level were 41 times more probable to be correctly classified by volunteers. The results thus show that the crowdsourced classification of remotely sensed imagery is able to generate geographic information about human settlements with a high level of quality. This study also makes clear the different sophistication levels of tasks that can be performed by volunteers and reveals some factors that may have an impact on their performance. In this paper we extend the framework of evolutionary inspection game put forward recently by the author and coworkers to a large class of conflict interactions dealing with the pressure executed by the major player (or principal) on the large group of small players that can resist this pressure or collaborate with the major player. We prove rigorous results on the convergence of various Markov decision models of interacting small agents (including evolutionary growth), namely pairwise, in groups and by coalition formation, to a deterministic evolution on the distributions of the state spaces of small players paying main attention to situations with an infinite state-space of small players. We supply rather precise rates of convergence. The theoretical results of the paper are applied to the analysis of the processes of inspection, corruption, cyber-security, counter-terrorism, banks and firms merging, strategically enhanced preferential attachment and many other

    Mean field game model of corruption

    Full text link
    A simple model of corruption that takes into account the effect of the interaction of a large number of agents by both rational decision making and myopic behavior is developed. Its stationary version turns out to be a rare example of an exactly solvable model of mean-field-game type. The results show clearly how the presence of interaction (including social norms) influences the spread of corruption

    Mean-Field-Game Model of Corruption

    Get PDF

    Approximate solutions for expanding search games on general networks

    Get PDF
    We study the classical problem introduced by R. Isaacs and S. Gal of minimizing the time to find a hidden point H on a network Q moving from a known starting point. Rather than adopting the traditional continuous unit speed path paradigm, we use the dynamic “expanding search” paradigm recently introduced by the authors. Here the regions S(t) that have been searched by time t are increasing from the starting point and have total length t. Roughly speaking the search follows a sequence of arcs ai such that each one starts at some point of an earlier one. This type of search is often carried out by real life search teams in the hunt for missing persons, escaped convicts, terrorists or lost airplanes. The paper which introduced this type of search solved the adversarial problem (where H is hidden to maximize the time to be found) for the cases where Q is a tree or is 2-arc-connected. This paper’s main contribution is to give two strategy classes which can be used on any network and have expected search times which are within a factor close to 1 of the value of the game (minimax search time). These strategies classes are respectively optimal for trees and 2-arc-connected networks. We also solve the game for circle-and-spike networks, which can be considered as the simplest class of networks for which a solution was previously unknown

    Mean-field-game model for botnet defense in cyber-security

    Get PDF
    We initiate the analysis of the response of computer owners to various offers of defence systems against a cyber-hacker (for instance, a botnet attack), as a stochastic game of a large number of interacting agents. We introduce a simple mean-field game that models their behavior. It takes into account both the random process of the propagation of the infection (controlled by the botner herder) and the decision making process of customers. Its stationary version turns out to be exactly solvable (but not at all trivial) under an additional natural assumption that the execution time of the decisions of the customers (say, switch on or out the defence system) is much faster that the infection rates
    corecore