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In this paper we extend the framework of evolutionary inspection game put forward recently by the author
and coworkers to a large class of conflict interactions dealing with the pressure executed by the major
player (or principal) on the large group of small players that can resist this pressure or collaborate with the
major player. We prove rigorous results on the convergence of various Markov decision models of interacting
small agents (including evolutionary growth), namely pairwise, in groups and by coalition formation, to
a deterministic evolution on the distributions of the state spaces of small players paying main attention
to situations with an infinite state-space of small players. We supply rather precise rates of convergence.
The theoretical results of the paper are applied to the analysis of the processes of inspection, corruption,
cyber-security, counter-terrorism, banks and firms merging, strategically enhanced preferential attachment
and many other.
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1. Introduction

1.1. Objectives and content of the study The inspection games represent an important
class of games with various applications from the arms race control to the study of tax evasion, see
e. g. [10] for a general survey, as well as [6], [8], [9] and references therein. In [61] the author with
coworkers initiated the study of the inspection games from the evolutionary perspective, aimed at
analysis of the class of games with large number of inspectees.
The aim of the present paper is two-folds: 1) To widen the range of applicability of this research

by introducing a unified methodology for the analysis of a large class of conflict interactions of
social, economic or military character (that turn out to be mathematically similar, but are often
discussed in disjoint sets of subject specific journals) describing the pressure executed by a big
player (or principal) on a large group of small players that resist the pressure or collaborate, that
is the class of games of an agent immersed into a pool of evolutionary and mean-field interacting
small players; 2) to build the rigorous mathematical theory of the law of large number limits
for the latter conflicts by proving that the controlled deterministic evolutionary equation (kinetic
equation) describing the dynamics of interaction can be obtained as the limiting behavior of the
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controlled Markov models of kth order and/or mean-field interaction (with the number of agents
tending to infinity) and thus extending the corresponding theory for the justification of the usual
replicator dynamics (see e.g. [16] or Section 11.9 of textbook [57] for the latter). The practical
usefulness of this limit is that it provides much more tractable limiting models where carrying out
a traditional Markov decision analysis for a large state space is often unfeasible.
The paper is organized as follows. In the next introductory subsections we discuss the related

literature on the dynamic law of large numbers and then motivate our analysis by invoking certain
real life conflict interactions that can be analyzed via our general model providing social, economic,
historic, geopolitical and literary perspectives. The next section is devoted to the simple case of a
’short-sighted’ principal with the direct best response strategy. We deduce rather precise conver-
gence rates in terms of the averages of smooth functions (rather than more developed estimates for
trajectories, see [16]) and provide the crucial link between the fixed point of the limiting dynamics
and the Nash equilibria of the corresponding N -player game (which is quite different from the
usually discussed link with the underlying two player game of the standard evolutionary setting,
which is not defined in our setting). This simplest framework presents a handy opportunity to
discuss in the most transparent way our basic examples of payoffs related to various contexts thus
leading to a unified theory of various subject areas. The discussion of the best response principal
is completed by more-or-less straightforward (from the mathematical point of view) extensions of
the basic model that include the possibility of simultaneous interactions of more than two players
(kth order interaction), as well as of diversified strategies of the principal solving the optimal allo-
cation problem on evolutionary background. Section 4 provides the convergence (with the rates) of
N -player games to a deterministic limit for a more sophisticated (but more realistic) setting of a
forward looking major player. Section 5 initiates the analysis of the controlled law of large numbers
for processes with unbounded intensities defined on a countable (rather than finite or compact)
state space, which leads to modeling processes of evolutionary growth with variable population size
of small players. This includes various processes of birth, death, migration and coalition formation,
which are strategically enhanced in the sense that their evolutions are subject to controlled exter-
nal pressure. In Appendix we explain some auxiliary facts about variational derivatives, ODEs in
Banach spaces and the comparison of semigroups.
Let us indicate further steps (in addition to those outlined in Subsection 5.3 and at the ends of

most of the sections) that are worth being exploited in the future work on the models discussed
here. (1) It should be of interest to analyze next order approximation to the dynamic law of large
numbers studied here, which can be carried out in two similar (but different) ways: by including in
the generator the second order (diffusive) terms of order 1/N (as is done in paper [74] for standard
evolutionary games or in [42], [43] for the chemical kinetics setting) or by systematic study of
fluctuations as dynamic central limit theorem (as done in [54] for classical models). (2) It is natural
to include possible spatial distributions (which can lead to quite remarkable effects, see e.g. [88])
aiming at the analysis of various models of crime detection and relating to the well developed
theory of patrolling games, see [3], [4], [5] and references therein. (3) We consider a single major
player in the pool of small players; it is natural to extend the model to the general finite player
game on the evolutionary background. (4) Allowing the principal to withdraw from the interaction
(to retire) would lead to the optimal stopping problem on the evolutionary background and, in
particular, to the evolutionary extension of the well studied multi-armed bandit problem (see e. g.
[33] and [40] for the background on the latter).
All notations for the norms and spaces used are carefully introduced in the Appendix.

1.2. Related work on dynamic law of large numbers In this section we discuss the
papers that are relevant more to our methodology itself rather than its concrete applications.
Roughly speaking, this methodology concerns the rigorous derivation of the dynamic law of large
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numbers for Markov dynamics with control, competition and/or cooperation. The literature on the
topic is quite abundant and keeps growing rapidly.
First of all, our model of evolutionary type behavior of species in reaction to the actions of

the distinguished major player bears similarity with the recently developed models of mean-field
games with a major player (see [47], [76], [87], [63]), where also the necessity to consider various
classes of players is well recognized, see also [20] and [21]. However, unlike the mean-field game
setting, (see e. g. [18], [67], [48]), our species do not rationally optimize the strategies based on
the observed environment, but rather mechanically copy (myopic hypothesis) better strategies of
randomly chosen neighbors.
The paper [39] proves the convergence (after a natural scaling) of a centrally controlled discrete-

time Markov chain of large number of constituents to the deterministic continuous-time dynamics
given by ordinary differential equations. Similar results are obtained in [55] for continuous-time
Markov chains with possibly competitive control.
The derivation of various evolutionary dynamics as the dynamic law of large number for Markov

models of binary or mean-field interaction is well developed in the literature on evolutionary games.
For instance, paper [26] proves the convergence to a deterministic ODE of the Markov model, where
the pairwise interaction is organized in discrete time so that at any moment a given fraction α(N)
of a homogeneous population of N species is randomly chosen and decomposed into matching pairs,
which afterwards experience simultaneous transformations into other pairs according to a given
distribution. Paper [30] extends this setting to include several types of species and the possibility
of different scaling that may lead, in the limit N →∞, not only to ODE, but to a diffusion process.
In [52] the general class of stochastic dynamic law of large number is obtained from binary or
more general kth order interacting particle systems (including jump-type and Lévy processes as a
noise). The study of [16] concentrates on various subtle estimates for the deviation of the limiting
deterministic evolution from the approximating Markov chain for the evolution that allows a single
player (at any random time) to change her strategy to the strategy of another randomly chosen
player.

A related trend of research analyzes various choices of Markov approximation to repeated games
and their consequences to the question of choosing a particular Nash equilibrium amongst the usual
multitude of them. Seminal contribution [50] distinguishes specifically the myopic hypothesis, the
mutation or experimentation hypothesis and the inertia hypothesis in building a Markov dynamics
of interaction. As shown in [50] (with similar result in [89]), introducing mutation of strength λ
and then passing to the limit λ→ 0 allows one to choose a certain particular Nash equilibrium,
called a long run equilibrium (or statistically stable, in the terminology of [38]) that for some
coordination games turns out to coincide with the risk-dominant (in the sense of [46]) equilibrium.
Further important contributions in this direction include [34], [23], [24] showing how different
equilibria could be obtained by a proper fiddling with noise (for instance local or uniform as in
[34]) and discussing the important practical question of ’how long’ is the ’long-run’ (for a recent
progress on this question see [65]). In particular paper [24] discusses in detail the crucial question
of the effect of applying the limits t→∞, τ → 0 (the limit from discrete to continuous replicator
dynamics), N →∞ and λ→ 0 in various order. Further development of the idea of local interaction
leads naturally to the analysis of the corresponding Markov processes on large networks, see [70]
and references therein. Some recent general results of the link between Markov approximation to
the mean field (or fluid) limit can be found in [68] and [17]. Though in many papers on Markov
approximation, the switching probabilities of a revising player depends on the current distribution
of strategies used (assuming implicitly that this distribution is observed by all players) there exist
also interesting results (initiated in [82], see new developments in [83]) arising from the assumption
that the switching of a revising player is based on an observed sample of given size of randomly
chosen other payers.
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In the abundant literature on the models of evolutionary growth (see [86] for a review), the
discussion usually starts directly with the deterministic limiting model, with the underlying Markov
model being just mentioned as a motivating heuristics.

1.3. Informal description of the model The models we discuss here in laymen terms will
be given precise mathematical meaning in Subsection 2.2.
In the inspection game with a large number of inspectees, see [61], any one from a large group

of N inspectees has a number of strategies parametrized by a finite or infinite set of nonnegative
numbers r indicating the level at which she chooses to break the regulations (r = 0 corresponds
to the full compliance). These can be the levels of tax evasion, the levels of illegal traffic through
a check point, the amounts at which the arms production exceeds the agreed level, etc. On the
other hand, a specific player, the inspector, tries to identify and punish the trespassers. Inspector’s
strategies are real numbers b indicating the level of her involvement in the search process, for
instance, the budget spent on it, which is related in a monotonic way to the probability of the
discovery of the illegal behavior of trespassers. The payoff of an inspectee depends on whether her
illegal behavior is detected or not. If social norms are taken into account, this payoff will also depend
on the overall crime level of the population, that is, on the probability distribution of inspectees
playing different strategies. The payoff of the inspector may depend on the fines collected from
detected violators, on the budget spent and again on the overall crime level (that she may have to
report to governmental bodies, say). As time goes by, random pairs of inspectees can communicate
in such a way that one inspectee of the pair can start copying the strategy of another one if it turns
out to be more beneficial. Then one can argue that this evolution (or more precisely, its limit as
N →∞) eventually settles down to one of its stable equilibria. The analysis of such equilibria was
the main objective of [61].
This model naturally extends to a more general setting where a distinguished ’big’ player exerts

certain level b of pressure on (or interference into the affairs of) a large group of N ’small’ players
that can resist this pressure on a level r. The term ’small’ reflects the idea that the influence of
each particular player becomes negligible as N →∞. As an example of this general setting one can
mention the interference of humans on the environment (say, by hunting or fishing) or the use of
medications to fight with infectious bacteria in a human body, with resisting species having the
choice of occupying the areas of ample foraging but more dangerous interaction with the big player
(large resistance levels r) or less beneficial but also less dangerous areas (low r). Another example
can be the level of resistance of the population on a territory occupied by military forces.

A slightly new twist to the model presents the whole class of games modeling corruption (see [1],
[49], [66], [72] and [58] and references therein for a general background). For instance, developing
the initial simple model of [15], a large class of these games studies the strategies of a benevolent
principal (representing, say, a governmental body that is interested in the efficient development of
economics) that delegates a decision-making power to a non-benevolent (possibly corrupt) agent,
whose behavior (legal or not) depends on the incentives designed by the principal. The agent can
deal, for example, with tax collection of firms. The firms can use bribes to persuade a corrupted tax
collector to accept falsified revenue reports. In this model the set of inspectors can be considered
as a large group of small players that can choose the level of corruption (quite in contrast to
the classical model of inspection) by taking no bribes at all, or not too much bribes, etc. The
strategy of the principal consists in fiddling with two instruments: choosing wages for inspectors
(to be attractive enough, so that the agents should be afraid to loose it) and investing in activities
aimed at the timely detection of the fraudulent behavior. Mathematically these two types are fully
analogous to preemptive and defensive methods discussed in the literature on counterterrorism
(described in detail below in Subsection 2.2).
Another ’linguistic twist’ that changes ’detected agents’ to ’infected agents’ brings us directly

to the (seemingly quite different) setting of cyber-security or biological attack-defence games. Yet
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another ’turn of the screw’ that extends the setting (more-or-less straightforwardly) to possibly
different classes of small players, brings us to the domain of optimal allocation games, but now
in the competitive evolutionary setting, where the principal (say an inspector) has the task to
distribute limited resources as efficiently as possible. As another related area let us stress the
analysis of terrorism and counterterrorist measures, where it is natural to consider terrorists or
terrorists organizations as small players against a principal representing a government of a target
country.
Furthermore, in many situations, the members of the pool of small players have an alternative

class of strategies of collaborating with the big player on various levels c. The creation of such
possibilities can be considered as a strategic action of the major player (who can thus exert some
control on the rules of the game). In biological setting this is, for instance, the strategy of dogs
joining humans in hunting their ’relatives’ wolves or foxes (nicely described poetically as the talk
between a dog and a fox in the famous novel [81]). Historical examples include the strategy of slaves
helping their masters to terrorize and torture other slaves and by doing this gaining for themselves
more beneficial conditions, as described e.g. in the classics [14]. As a military example one can
indicate the strategy of the part of the population on a territory occupied by foreign militaries
that joins the local support forces for the occupants, for US troops in Iraq this strategy being
well discussed in Chapter 2 of [73]. Alternatively, this is also the strategy of population helping
police to fight with criminals and/or terrorists. In the world of organized crime it is also a well
known strategy to play simultaneously both resistance (committing crime) and collaboration (to
collaborate with police to get rid of the competitors), the classic presentation in fiction being novel
[36].
It is worth stressing the existence of a large number of problems, where it is essential to work with

infinite state-space of small players, in particular, with the state-space being the set of all natural
numbers. Mathematical results are much rare for this case, as compared with finite state-spaces,
and we pay much attention to it. This infinite-dimensional setting is crucial for the analysis of
models with growth, like merging banks or firms on the market (see [77] and [80]) or the evolution
of species and the development of networks with preferential attachment (the term coined in [13]),
for instance scientific citation networks or the network of internet links (see a detailed discussion
in [64]). Models of growth are known to lead to power laws in equilibrium, which are verified in a
variety of real life processes, see e.g. [80] for a general overview and [78] for particular applications
in crime rates. Here we are interested in the response of such system to external parameters that
may be set by the principal (say, by governmental regulations) who has her own agenda (may wish
to influence the growth of certain economics sectors). Apart from the obvious economic examples
mentioned above, similar process of the growth of coalitions under pressure can be possibly used for
modeling the development of human cooperation (forming coalitions under the ’pressure’ exerted
by the nature) or the creation of liberation armies (from the initially small guerillas groups) by
the population of the territories oppressed by an external military force. Of course these processes
have a clear physical analogs, say the formation of dimers and trimers by the molecules of gas
with eventual condensation under (now real physical) pressure. The relation with the Bose-Einstein
condensation is also well known, see e. g. [22] and [86].

2. The best response principal: simplest setting

2.1. Theory in basic discrete setting We shall consider a game of a major ’big’ player P
(the principal) with a group of small (indistinguishable) players. The strategies of the big player are
points b in a compact convex subset of a Euclidean space. In the simplest examples points b belong
to a closed interval and can be interpreted as the level of involvement in the actions of the group
(say, a budget of a big player). In general, its multidimensional character is natural as describing
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possible various instruments that can be used to influence other players or various allocations to
groups of small players with various strategies.
Let us start with the case of a finite number of strategies {1, · · · , d} of each small player. Thus

the state space of the group is Zd
+, the set of sequences of d non-negative integers n= (n1, ..., nd),

where each ni specifies the number of players in the state i. Let N denote the total number of
players in the state n: N = n1+ ...+nd. For i ̸= j and a state n with ni > 0 denote by nij the state
obtained from n by removing one agent of type i and adding an agent of type j, that is ni and nj

are changed to ni − 1 and nj +1 respectively. Let the payoff Ri(x, b) of the strategy i against the
player P be a continuous function of the strategy b of P and the overall distribution

x= (x1, · · · , xd) = (n1, · · · , nd)/N ∈Σd

of the strategies applied, where Σd is the standard simplex of vectors with non-negative coordinates
summing up to 1 (that is, the set of probability laws on {1, · · · , d}).
Assuming that P has some strategy b(x,N) let us consider the following Markov model of the

interaction of the group. With some rate κ/N any pair of agents can meet and discuss their payoffs.
This discussion may result in the player with lesser payoff Ri switching to the strategy with the
better payoff Rj, which may occur with probability α(Rj −Ri), where α > 0 is a proportionality
constant. In future we set α= 1, as it can be directly incorporated in κ.

Remark 1. We are working here with a pure myopic behavior for simplicity. Introduction of
random mutation on global or local levels (see e. g. [50] for standard evolutionary games) would
not affect essentially the convergence result below, but would lead to serious changes in the long
run of the game, which are worth being exploited.
More rigorously, the process is described as follows. At the initial moment to any pair of agents

{Ai,Aj} (where Ai and Aj are in the state i and j respectively) is attached a random clock, which
will click after α|Rj−Ri|/N -exponential waiting time (the expectation of this time isN/α|Rj−Ri|).
The minimum of all these independent N(N − 1) exponential waiting times is of course also an
exponential waiting time. If this minimum is realized on the pair {Ai,Aj}, then the agent with the
lower R, say Ai, changes her state to the one with higher R, say Aj, and the process continues
analogously from the new state (all clocks are set to zero). (Alternatively, the same process is
described by one exponential clock such that, when it clicks, the updating pair (i, j) is chosen with
probability proportional to the product ninj of sizes of each strategy and the difference of their
payoffs.) This process is a continuous-time Markov chain on Zd

+ with the generator

Lb,Nf(n) =
1

N

∑
i,j:Rj(n/N,b(n/N,N))>Ri(n/N,b(n/N,N))

κninj

×[Rj(n/N, b(n/N,N))−Ri(n/N, b(n/N,N))][f(nij)− f(n)]. (1)

In terms of distributions x= n/N it becomes

Lb,Nf(x) =N
∑

i,j:Rj(x,b(x,N))>Ri(x,b(x,N))

κxixj

×[Rj(x, b(x,N))−Ri(x, b(x,N))][f(x− ei/N + ej/N)− f(x)], (2)

where e1, ..., ed denotes the standard basis in Rd.
We are interested in the asymptotic behavior of the chains generated by Lb,N , as N →∞. As

will be shown, the limiting process turns out to be a deterministic one governed by the system of
ODE

ẋj =
∑
i

κxixj[Rj(x, b(x))−Ri(x, b(x))], j = 1, ..., d, (3)
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which is the system of kinetic equations generalizing (and modifying) the usual replicator dynamics.
At the end of this section we shall discuss some consequences to the corresponding game with finite
number of players.
Remark 2. The heuristic arguments leading to the equations of type (3) are well presented

in the literature (see e. g. [25] or [61]) and will not be reproduced here. The general context of
deterministic limit is discussed in [55].
To go further we have to model the behavior of the major player. As a warm-up, we start

in this section with a simpler case of a short-sighted major player that can make instantaneous
adjustments to her strategy without additional costs. Namely, let us assume that the payoff of P
playing against the group of small players is given by a function B(x, b,N), which is smooth and
concave in b, so that for all x,N the maximum point

b∗(x,N) = argmaxB(x, b,N) (4)

is uniquely defined, and that P chooses b∗(x,N) as her strategy at any time.
Let us denote by X∗

N(t, x) the Markov chain generated by (2) and starting in x ∈Zd
+/N at the

initial time t= 0, with b∗ used instead of b.
We use the (standard) notations for norms, Lipschitz norms and functional spaces specified in

Appendix 6.1.

Theorem 1. Assume

|b∗(x,N)− b∗(x)| ≤ ϵ(N), (5)

with some ϵ(N)→ 0, as N →∞ and some function b∗(x), and let the functions Ri(x, b), b
∗(x,N)

and b∗(x) belong to CbLip in all variables with norms uniformly bounded by some ω > 0. Suppose
the initial data x(N) of the Markov chains X∗

N(t, x(N)) converge to a certain x in Rd, as N →∞.
Then these Markov chains converge in distribution to the deterministic evolution Xt(x) solving the
equation

ẋj =
∑
i

κxixj[Rj(x, b
∗(x))−Ri(x, b

∗(x))], j = 1, ..., d, (6)

with initial condition x. This equation is globally well-posed: for any initial x ∈ Σd, the solution
Xt(x) exists and belongs to Σd for all times t.
For smooth or Lipschitz g, the following rates of convergence are valid:

|Eg(X∗
N(t, x(N))− g(Xt(x(N)))| ≤ tC(ω, t)

(
d√
N

+ ϵ(N)

)
∥g∥C2(Σd)

, (7)

|Eg(X∗
N(t, x(N))− g(Xt(x(N)))| ≤C(ω, t)

(
dt2/3

N 1/3
+ tϵ(N)

)
∥g∥bLip, (8)

|g(Xt(x(N))− g(Xt(x))| ≤C(ω, t)∥g∥bLip|x(N)−x| (9)

with constants C(ω, t) uniformly bounded for bounded sets of ω and t.

Remark 3. (i) The convergence result follows more-or-less directly from the general theory
(the settings of [16] or Section 11.9 of [57] are just slightly different). We give an analytic proof
aiming at the effective rates of weak convergence, improving essentially the results of [55] that
dealt with smooth coefficients R. (ii) We separate (9) from (7) to stress that (7) holds without the
assumption of the convergence x(N)→ x. The dependence on t and d is not essential here, but
the latter becomes crucial for dealing with infinite state-spaces, while the former for dealing with
a forward looking principal.
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T he well-posedness of (6) is more or less obvious, and it is a particular case of more general
Theorem 6.1 of [54] or Lemma 5 of Appendix (with the barrier L being identically 1). Once the
well-posedness is established, the Lipshitz continuity (9) of the solutions is a standard fact from
the theory of ODEs.

Next, since any function g ∈C(Rd) can be approximated by functions from C2(Rd), the conver-
gence of Markov chains from Statement (i) follows from (7) and (9). Thus it remains to show (7)
and (8).

Let us start with some calculations concerning Lb,N assuming that limN→∞ b(x,N) = b(x) exists
and that f ∈C1(Σd). Then we find, expanding f in Taylor series, that

lim
N→∞, n/N→x

Lb,Nf(n/N) = Λbf(x),

where

Λbf(x) =
∑

i,j:Rj(x,b(x))>Ri(x,b(x))

κxixj[Rj(x, b(x))−Ri(x, b(x))]

[
∂f

∂xj

− ∂f

∂xi

]
(x), (10)

or equivalently

Λbf(x) =
d∑

i,j=1

κxixj[Rj(x, b(x))−Ri(x, b(x))]
∂f

∂xj

(x). (11)

Thus the limiting operator Λbf is the first-order PDO with characteristics solving the equations
(3), which turn to the required equations (6) when b= b∗. What is left is the rigorous proof that
the convergence of the generators Lb∗,N to Λb∗ on smooth functions f implies the convergence of
the corresponding semigroups.
The main idea is to approximate all Lipschitz continuous functions involved by the smooth ones.

Namely, choosing an arbitrary mollifier χ (non-negative infinitely smooth even function on R with
a compact support and

∫
χ(w)dw= 1) and the corresponding mollifier ϕ(y) =

∏
χ(yj) on Rd−1, let

us define, for any function V on Σd, its approximation

Φδ[V ](x) =

∫
Rd−1

1

δd−1
ϕ
(y
δ

)
V (x− y)dy=

∫
Rd−1

1

δd−1
ϕ

(
x− y

δ

)
V (y)dy.

Notice that Σd is (d− 1)-dimensional object, so that any V on it can be considered as a function
of first (d− 1) coordinates of a vector x∈Σd (continued to Rd−1 in an arbitrary continuous way).
It follows that

∥Φδ[V ]∥C1 = |Φδ[V ]∥bLip ≤ ∥V ∥bLip (12)

for any δ and

|Φδ[V ](x)−V (x)| ≤
∫

1

δd−1
ϕ
(y
δ

)
|V (x− y)−V (x)|dy

≤ ∥V ∥Lip

∫
1

δd−1
ϕ
(y
δ

)
|y|1 dy≤ δ(d− 1)∥V ∥Lip

∫
|w|χ(w)dw. (13)

Remark 4. We care about dimension d in the estimates only for future use (here it is irrele-
vant). By a different choice of mollifier ϕ one can get rid of d in (13), but then it would pop up in
(14), which is avoided with our ϕ.

Next, the norm ∥Φδ[V ]∥C2 does not exceed the sum of the norm ∥Φδ[V ]∥C1 and the supremum
of the Lipschitz constants of the functions

∂

∂xj

Φδ[V ](x) =

∫
1

δd

(
∂

∂xj

ϕ

)(y
δ

)
V (x− y)dy.
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Hence

∥Φδ[V ]∥C2 ≤ ∥V ∥bLip

(
1+

1

δ

∫
|χ′(w)|dw

)
. (14)

Let U t
N denote the semigroup of the chain X∗

N(t, x): U
t
Ng(x) =Eg(X∗

N(t, x)), and U t the semi-
group of the deterministic process generated by (6): U tg(x) = g(Xt(x)). Let U t

N,δ and U t
δ be the

same semigroups but built with respect to the functions

Φδ[Rj](x) =

∫
1

δd
ϕ
(y
δ

)
Rj(x− y, b∗(x− y))dy

rather than Rj(x, b
∗(x,N)) and Rj(x, b

∗(x)) respectively. Similarly we denote by Lδ
b∗,N and Λδ

b∗ the
corresponding generators and by Xδ

t (x) the solution of (6) with Φδ[Rj] used instead of Rj.
Then

| d
dt
(Xt(x)−Xδ

t (x))|1 ≤ 2δ+4ω|Xt(x)−Xδ
t (x)|1,

implying that |Xt(x)−Xδ
t (x)|1 ≤ δtC(ω, t) and hence

|U tg(x)−U t
δg(x)|= |g(Xt(x)− g(Xδ

t (x))| ≤ ∥g∥bLipδtC(ω, t). (15)

Moreover, by Lemma 1 (its simplest finite dimensional version) and (14)

|U t
δg(x)|C2 ≤C(ω, t)

(
∥g∥C2 +

1

δ
∥g∥bLip

)
. (16)

Next we use (101) to get

∥U t
Ng−U t

δg∥ ≤ t sup
s∈[0,t]

∥(Lb∗,N −Λδ
b∗)U

s
δ g∥

≤ t sup
s∈[0,t]

(
∥(Lb∗,N −Lδ

b∗,N)U
s
δ g∥+ ∥(Lδ

b∗,N −Λδ
b∗)U

s
δ g∥

)
. (17)

Then

∥(Lb∗,N −Lδ
b∗,N)U

s
δ g∥ ≤C(ω)(ϵ(N)+ dδ)∥U s

δ g∥bLip ≤C(ω, s)(ϵ(N)+ dδ)∥g∥bLip,

and (using (16))

∥(Lδ
b∗,N −Λδ

b∗)U
s
δ g∥ ≤C(ω, t)

1

N
∥U s

δ g∥C2 ≤C(ω, t)
1

N
∥g∥C2(1+1/δ).

Thus choosing δ= 1/
√
N , makes the decay rate of δ and 1/(Nδ) equal yielding (7).

Finally, if g is only Lipschitz, we approximate it by Φδ̃[g], so that the second derivative of Φδ̃[g]
is bounded by ∥g∥bLip/δ̃. Thus the rates of convergence for g become of order

[dδ̃+ t(ϵ(N)+ δd+1/(Nδδ̃))]∥g∥bLip.

Choosing δ = (tN)−1/3, δ̃ = t2/3N−1/3 makes the decay rate of all terms (apart from ϵ(N)) equal
yielding (8) and completing the proof.
Theorem 1 suggests that eventually the evolution will settle down near some stable equilibrium

points of dynamic systems (6). Analysis of stability of these equilibria will be carried out elsewhere.
As was mentioned, for a particular case of evolutionary inspection games it was worked out in [61].
Let us observe only that system (6) is quite specific in the sense that its singular points can be
easily identified. In fact, for a subset I ⊂ {1, · · · , d}, let

ΩI = {x∈Σd : xk = 0⇐⇒ k ∈ I,andRj(x, b
∗(x)) =Ri(x, b

∗(x)) for i, j /∈ I}.
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Theorem 2. A vector x with non-negative coordinates is a singular point of (6), that is, it
satisfies the system of equations∑

i

κxixj[Rj(x, b
∗(x))−Ri(x, b

∗(x))] = 0, j = 1, ..., d, (18)

if and only if x∈ΩI for some I ⊂ {1, · · · , d}.

S ince for any I such that xk = 0 for k ∈ I the system (18) reduces to the same system but with
coordinates k /∈ I, it is sufficient to show the result for the empty I. In this situation, system (18)
reduces to ∑

i

xi[Rj(x, b
∗(x))−Ri(x, b

∗(x))] = 0, j = 1, ..., d. (19)

Subtracting jth and kth equations of this system yields

(x1 + · · ·+xd)[Rj(x, b
∗(x))−Rk(x, b

∗(x))] = 0,

and thus
Rj(x, b

∗(x)) =Rk(x, b
∗(x)),

as required.
So far we have deduced the dynamics arising from a certain Markov model of interaction. As it

is known, the internal (not lying on the boundary of the simplex) singular points of the standard
replicator dynamics of evolutionary game theory correspond to the mixed-strategy Nash equilibria
of the initial game with a fixed number of players (in most examples just two-player game). There-
fore, it is natural to ask whether a similar interpretation can be given to fixed points of Theorem
2. Because of the additional nonlinear mean-field dependence of R on x the interpretation of x as
mixed strategies is not at all clear. However, consider explicitly the following game ΓN of N + 1
players (that was tacitly borne in mind when discussing dynamics). When the major player chooses
the strategy b and each of N small players chooses the state i, the major player receives the payoff
B(x, b,N) and each player in the state i receives Ri(x, b), i= 1, · · · , d (as above, with x= n/N and
n= (n1, · · · , nd) the realized occupation numbers of all the states). Thus a strategy profile of small
players in this game can be specified either by a sequence of N numbers (expressing the choice of
the state by each agent), or more succinctly, by the resulting collection of frequencies x= n/N .

As usual one defines a Nash equilibrium in ΓN as a profile of strategies (xN , bN) such that for
any player changing its choice unilaterally would not be beneficial, that is

bN = b∗N(xN) = argmaxB(xN , b,N)

and for any i, j ∈ {1, · · · , d}

Rj(x− ei/N + ej/N, bN)≤Ri(x, bN). (20)

A profile is an ϵ-Nash if these inequalities hold up to an additive correction term not exceeding ϵ.
It turns out that the singular points of (6) describe all approximate Nash equilibria for ΓN in the
following precise sense:

Theorem 3. Let R(x, b) be Lipschitz continuous in x uniformly b. Set R̂= supi,b ∥Ri(., b)∥Lip.
For I ⊂ {1, · · · , d}, let

Ω̂I = {x∈ΩI :Rk(x, b
∗(x))≤Ri(x, b

∗(x)) fork ∈ I, j /∈ I}.

Then the following assertions hold.
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(i) The limit points of any sequence xN such that (xN , b
∗(xN)) is a Nash equilibrium for ΓN

belong to Ω̂I for some I. In particular, if all xN are internal points of Σd, then any limiting point
belongs to Ω∅.

(ii) For any I and x∈ΩI there exists an 2R̂d/N -Nash equilibrium (xN , b
∗
N(xN)) to ΓN such that

the difference of any coordinates of xN and x does not exceed 1/N in magnitude.

( i) Let us consider a sequence of Nash equilibria (xN , b
∗(xN)) such that the coordinates of all

xN in I vanish. By (20) and the definition of R̂,

|Rj(xN , b
∗
N(xN))−Ri(xN , b

∗
N(xN))| ≤

2

N
R̂ (21)

for any i, j /∈ I and

Rk(xN , b
∗
N(xN))≤Ri(xN , b

∗
N(xN))+

2

N
R̂, k ∈ I, i /∈ I. (22)

Hence x∈ Ω̂I for any limiting point (x, b).
(ii) If x ∈ Ω̂I one can construct its 1/N -rational approximation, namely a sequence xN ∈ Σd ∩

Zd
+/N such that the difference of any coordinates of xN and x does not exceed 1/N in magnitude.

For any such xN , the profile (xN , b
∗(xN)) is an 2R̂d/N -Nash equilibrium for ΓN .

Theorem 3 provides a game-theoretic interpretation of the fixed points of dynamics (6), which
is independent of any myopic hypothesis used to justify this dynamics.
Of course, the set of ’almost equilibria’ Ω may be empty or contain many points. Thus one

can naturally pose here the analog of the question which is well discussed in the literature on the
standard evolutionary dynamics (see [23] and references therein), namely which equilibria can be
chosen in the long run (the analogs of stochastically stable equilibria in the sense of [38]) if small
mutations are included in the evolution of the Markov approximation.

2.2. Examples In the standard setting of inspection games with a possibly tax-evading
inspectee (analyzed in detail in [61] under some particular assumptions), the payoff R looks as
follows:

Rj(x, b) = r+(1− pj(x, b))rj − pj(x, b)f(rj), (23)

where r is the legal payoff of an inspectee, various rj denote various amounts of not declared profit,
j = 1, · · · , d, pj(x, b) is the probability for the illegal behavior of an inspectee to be found when the
inspector uses budget b for searching operation and f(rj) is the fine that the guilty inspectee has
to pay when being discovered.
In the standard model of corruption ’with benevolent principal’, see e. g. [1], one sets the payoff

of a possibly corrupted inspector (now taking the role of a small player) as

(1− p)(r+w)+ p(w0 − f),

where r is now the bribe an inspector asks from a firm to agree not to publicize its profit (and
thus allowing her not to pay tax), w is the wage of an inspector, f the fine she has to pay when
the corruption is discovered and p the probability of a corrupted behavior to be discovered by the
benevolent principal (say, governmental official). Finally it is assumed that when the corrupted
behavior is discovered the agent not only pays fine, but is also fired from the job and has to accept
a lower level activity with the reservation wage w0. In our strategic model we make r to be the
strategy of an inspector with possible levels r1, · · · , rd (the amount of bribes she is taking) and the
probability p of discovery to be dependent on the effort (say, budget b) of the principal and the
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overall level of corruption x, with fine too depending on the level of illegal behavior. This natural
extension of the standard model leads to the payoff

Rj(x, b) = (1− pj(x, b))(rj +w)+ pj(x, b)(w0 − f(rj)), (24)

which is essentially identical to (23).
In the more general pressure and resistance games, the payoff Rj(x, b) has the following special

features: R increases in j and decreases in b. The dependence of R and b∗ on x is more subtle,
as it may take into account social norms of various character. In case of the pressure game with
resistance and collaboration, the strategic parameter r of small players naturally decomposes into
two coordinates r= (r1, r2), the first one reflecting the level of resistance and the second the level
of collaboration. If the correlation between these activities are not taken into account the payoff
R can be decomposed into the sum of rewards R = R1

j(x, b) +R2
j(x, b) with R1 having the same

features as R above, but with R2 increasing both in j and b.
As another set of examples let us look at the applications to the botnet defense (for example,

against the famous conflicker botnet), widely discussed in the contemporary literature, since bot-
nets (zombie networks) are considered to pose the biggest threat to the international cyber-security,
see e. g. review of the abundant bibliography in [19]. The comprehensive game theoretical frame-
work of [19] (that extends several previous simplified models) models the group of users subject to
cybercriminal attack of botnet herders as a differential game of two players, the group of cyber-
criminals and the group of defenders. Our approach adds to this analysis the networking aspects
by allowing the defenders to communicate and eventually copy more beneficial strategies. More
concretely, our general model of inspection or corruption becomes almost directly applicable in this
setting by the clever linguistic change of ’detected’ to ’infected’ and by considering the cybecrim-
inal as the ’principal agent’ ! Namely, let rj (the index j being taken from some discrete set here,
though more advanced theory of the next sections allows for a continuous parameter j) denote the
level of defense applied by an individual (computer owner) against botnet herders (an analog of
the parameter γ of [19]), which can be the level of antivirus programs installed or the measures
envisaged to quickly report and repair a problem once detected (or possibly a multidimensional
parameter reflecting several defense measures). Similarly to our previous models, let pj(x, b) denote
the probability for a computer of being infected given the level of defense measures rj, the effort
level b of the herder (say, budget or time spent) and the overall distribution x of infected machines
(this ’mean-field’ parameter is crucial in the present setting, since infection propagates as a kind
of epidemic). Then, for a player with a strategy j, the cost of being (inevitably) involved in the
conflict can be naturally estimated by the formula

Rj(x, b) = pj(x, b)c+ rj, (25)

where c is the cost (inevitable losses) of being infected (thus one should aim at minimizing this
Rj, rather then maximizing it, as in our previous models). Of course, one can extend the model to
various classes of customers (or various classes of computers) for which values of c or rj may vary
and by taking into account more concrete mechanisms of virus spreading, as described e. g. in [69]
and [71]. A study of botnet defence problems from the mean-field game setting was initiated in
[56] and [59].
Yet another set of examples represent the models of terrorists’ attacks and counterterrorism

measures, see e. g. [7], [84], [85], [28] for the general background on game -theoretic models of
terrorism, and [35] for more recent developments. We again suggest here a natural extension to
basic models to the possibility of interacting large number of players and of various levels of
attacks, the latter extension being in the line with argument from [29] advocating consideration
of ’spectacular attacks’ as part of a continuous scale of attacks of various levels. In the literature,
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the counterterrorists’ measures are usually decomposed into two groups, so called proactive (or
preemptive), like direct retaliation against the state-sponsor and defensive (also referred to as
deterrence), like strengthening security at an airport, with the choice between the two considered
as the main strategic parameter. As stressed in [79] the first group of action is ’characterized in
the literature as a pure public good, because a weakened terrorist group poses less of a threat to
all potential targets’, but on the other hand, it ’may have a downside by creating more grievances
in reaction to heavy-handed tactics or unintended collateral damage’ (because it means to ’bomb
alleged terrorist assets, hold suspects without charging them, assassinate suspected terrorists, curb
civil freedoms, or impose retribution on alleged sponsors’), which may result in the increase of
terrorists’ recruitment. Thus, the model of [79] includes the recruitment benefits of terrorists as
a positively correlated function of preemption efforts. A direct extension of the model of [79] in
the line indicated above (large number of players and the levels of attacks) suggests to write down
the reward of a terrorist, or a terrorist group, considered as a representative of a large number of
small players, using one of the levels of attack j = 1, · · · , d (in [79] there are two levels, normal and
spectacular only), to be

Rj(x, b) = (1− pj(x, b))r
fail
j (b)+ pj(x, b)(Sj + rsuccj (b)), (26)

where pj(x, b) is the probability of a successful attack (which depends on the level b of preemptive
efforts of the principal b and the total distribution of terrorists playing different strategies), Sj is
the direct benefits in case of a success and rfailj (b), rsuccj (b) are the recruitment benefits in the cases
of failure or success respectively. The costs of principal are given by

B(x, b) =
∑
j

xj [(1− pj(x, b))b+ pj(b)(b+Sj)] .

It is seen directly that we are again in the same situation as described by (24) (up to constants
and notations). The model extends naturally to account for possibility of the actions of two types,
preemption and deterrence. Of importance should be its extension to several major players (for
instance, USA and EU are considered in [7]).
As was mentioned in introduction, there exists a large class of problems, where the state space

of small players become infinite. We shall pay most of our attention to the major particular case
(possibly the mostly relevant one for practical purposes) of a countable state space arising in the
analysis of the models of evolutionary growth. For this class of models the number N of agents
become variable (and usually growing in the result of the evolution) and the major characteristics
of the system becomes just the distribution x= (x1, x2, · · · ) of the sizes of the groups. The analysis
of the evolution of these models is well -developed and has a long history, see [86]. Mathematically
the analysis is similar to finite state spaces, though serious technical complications may arise.
We develop the ’strategically enhanced model’ in Section 5 analyzing such evolutions under the
’pressure’ of strategically varying parameters set by the principal.

3. The best response principal: extensions

3.1. Compact state-space Let us extend the analysis given above to the case of continuous
state space of small players, assuming it to be a compact convex subset Z, of a Euclidean space Rn.
Let P(Z) denote the set of probability laws on Z equipped with its weak topology. For each N the
state space of N agents becomes ZN . However, assuming agents to be indistinguishable, the state
space is better described as the set of equivalence classes of ZN with respect to all permutations
that can be naturally identified with the set MN of the normalized sums of N Dirac measures

1

N
(δx1 + · · ·+ δxN ).
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For x = (x1, · · · , xN) let us use shorter notation δx for the sum δx1 + · · · + δxN . Assume that
continuous functions R(x,µ, b) on (Z ×M+(Z)×Rr) and B(µ, b,N) on (M+(Z)×Rr ×N) are
given such that R(xj, (δx1 + · · ·+ δxN )/N, b) is the payoff for xj in the group x= (x1, · · · , xN) given
the level of efforts b∈Rr of the major player, and B((δx1 + · · ·+ δxN )/N, b,N) is the payoff of the
major player applying the effort level b to the the group x= (x1, · · · , xN). Assume again that B is
a smooth and strictly concave function of b, so that

b∗(δx/N,N) = argmaxbB(δx/N, b,N) (27)

is well defined and that the limit
lim

N→∞
b∗(µ,N) = b∗(µ) (28)

exists uniformly in µ∈P(Z).
The direct analog of the generator (2) with b = b∗ (describing the Markov chain produced by

pairwise exchange of information) to the continuous state-space is clearly the operator

Lb∗,Nf(δx/N) =
κ
N

∑
(i,j)

[f(δx/N − δxi/N + δxj/N)− f(δx/N)]

×[R(xj, δx/N, b∗(δx/N,N))−R(xi, δx/N, b∗(δx/N,N))], (29)

where x= (x1, · · · , xN) and the sum is over all pairs (i, j) of indices ordered in such a way that

R(xj, δx/N, b∗(δx/N,N))>R(xi, δx/N, b∗(δx/N,N))

(the order is irrelevant if the corresponding values of R coincide).
Let us denote by X∗

N(t, δx/N) the Markov chain on MN generated by (29).
In order to see what happens with generator (29) in the limit N →∞, take a linear function f

on measures given by the integration, that is,

f(µ) = Fg(µ) =

∫
g(x)µ(dx). (30)

Then
Lb∗,NFg(δx/N) =

κ
N 2

∑
(i,j)

×[R(xj, δx/N, b∗(δx/N,N))−R(xi, δx/N, b∗(δx/N,N))][g(xj)− g(xi)].

Since the product of the square brackets is invariant under the change of the order of (i, j), this
rewrites in a simpler form as

Lb∗,NFg(δx/N) =
κ

2N 2

N∑
i,j=1

[R(xj, δx/N, b∗(δx/N,N))−R(xi, δx/N, b∗(δx/N,N))](g(xj)− g(xi)],

(31)
and consequently as

Lb∗,NFg(δx/N) =
κ
2

∫ ∫
[g(z2)− g(z1)]

×[R(z2, δx/N, b∗(δx/N,N))−R(z1, δx/N, b∗(δx/N,N))]
1

N
δx(dz1)

1

N
δx(dz2).

Thus if δx/N → µ as N →∞ with any µ∈M(Z) this turns to

Lb∗Fg(µ) =
κ
2

∫
Z

∫
Z

[g(z2)− g(z1)][R(z2, µ, b
∗(µ))−R(z1, µ, b

∗(µ))]µ(dz1)µ(dz2), (32)
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or equivalently

Lb∗Fg(µ) =κ
∫
Z

∫
Z

g(z2)[R(z2, µ, b
∗(µ))−R(z1, µ, b

∗(µ))]µ(dz1)µ(dz2). (33)

These calculations make the following result plausible. Unlike finite-state-space case, we give two
different convergence rates depending basically on whether weak or strong regularity is assumed
on the coefficients. We use the notations for the spaces of functions on measures introduced in
Appendices 6.1 and 6.3. Assume for definiteness that Z belongs to the cube [0,K]n of Rn.

Theorem 4. Suppose the functions R(x,µ, b) and b∗(µ) are bounded weakly Lipschitz with
respect to all their variables with the bounds and Lipschitz constants bounded by some ω. Sup-
pose the initial data δx(N)/N of the Markov chains X∗

N(t, δx(N)/N) converge weakly to a certain
µ ∈ P(Z), as N → ∞. Then these Markov chains converge in distribution to the deterministic
evolution on P(Z) solving the kinetic equation

µ̇t(dz) =κ
∫
y∈Z

[R(z,µt, b
∗(µt))−R(y,µt, b

∗(µt))]µt(dy)µt(dz), (34)

or equivalently in the weak form

d

dt

∫
g(z)µt(dz) =κ

∫
Z2

g(z)[R(z,µt, b
∗(µt))−R(y,µt, b

∗(µt))]µt(dy)µt(dz). (35)

This equation is globally well-posed: for any initial µ∈M+(Z) (in particular µ∈P(Z)), the solu-
tion µt(µ) exists and belongs to M+(Z) (respectively, P(Z)) for all times t.

Moreover, if g ∈C2
weak(M+

1 (Z))∩CbLip
weak(M+

1 (Z)), the following rate of convergence is valid:

|Eg(X∗
N(t, δx(N)/N))− g(µt(δx(N)/N))|

≤ tC(ω, t)

(
1

N 1/(2+n)
+ ϵ(N)

)
(∥g∥C2

weak
+ ∥g∥weakLip). (36)

If g ∈CbLip
weak(M+

1 (Z)), then

|Eg(X∗
N(t, δx(N)/N))− g(µt(δx(N)/N))| ≤C(ω, t)

(
t

(tN)1/(2n+3)
+ tϵ(N)

)
∥g∥weakLip, (37)

|g(µt(δx(N)/N))− g(µt(µ))| ≤C(ω, t)∥g∥bLip|dbLip∗(δx(N)/N,µ), (38)

with constants C(ω, t) uniformly bounded for bounded ω and t.

Remark 5. (i) A probabilistic proof of convergence is again well known (via the tightness of
the related martingale problems), see e.g. similar argument in Theorem 4.1 of [53], but it does not
supply the rates that are crucial for applications to optimal control. (ii) All estimates reduce to
the estimates of Theorem 4 by setting n= 0, as expected (the dimension of a finite set is zero).
W ell-posedness of (34) is a consequence of Lemma 5 (with the barrier L being identically 1).

Then estimate (38) is the standard Lipschitz continuity of the solutions of ODE with Lipschitz
coefficients with respect to initial data. Let us concentrate on (36) and (37).
The generator above is calculated only for linear functionals on measures. To calculate it for

arbitrary smooth functionals, one has to use the technique of variational derivatives (recalled in
Appendix). Namely, for a smooth f the value of Lb∗,Nf(µ) is given by Lemma 4, that is, it coincides
with

Llim
b∗ f(µ) =κ

∫
Z2

δf(µ)

δµ(z2)
[R(z2, µ, b

∗(µ))−R(z1, µ, b
∗(µ))]µ(dz1)µ(dz2)
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up to an additive correction of order 1/N depending on the second derivatives of f .
To deduce the convergence of processes from the convergence of generators on f ∈C2

weak(M(Z))
we follow the same strategy of approximation as above for Theorem 1. An additional ingredient is
the approximation of a weakly Lipschitz function F on M(Z), with the weak Lipschitz constant
∥F∥weakLip, by finite-dimensional functionals (see Appendix I in [54]). Namely, for j ∈N, let xk

j =
(K/j)k, k = (k1, · · · , kn) with kl ∈ {0, · · · , j}, be the lattice of (j +1)n points in [0,K]n and ϕk

j be
the collection of (j+1)n functions on Rn given by

ϕj
k(x) =

n∏
i=1

χ

(
j

K
(xi − ki

K

N
)

)
, χ(z) =

{
1− |z|, |z| ≤ 1,
0, |z| ≥ 1.

This choice of functions ϕj
k is not at all unique. It is just a concrete example of non-negative

functions satisfying the following conditions: for any j,
∑

k=(k1,··· ,kn) ϕ
j
k = 1 and an arbitrary x can

belong to the supports of not more than 2n of functions ϕj
k; and

|ϕj
k(x)−ϕj

k(y)| ≤
j

K
|x− y|1. (39)

Then one defines the finite-dimensional projections in the spaces of functions and measures on
Z ⊂ [0,K]n:

Pj(f) =
∑
k

f(xk
j )ϕ

k
j , P ∗

j (µ) =
∑
l

(ϕl
j, µ)δxlj

,

and the corresponding finite-dimensional projections on Cweak(M+
1 (Z))

F (µ) 7→ Fj(µ) = F (P ∗
j (µ)).

The projections Pj have the following properties:

∥Pj∥ ≤ ∥f∥, ∥Pjf − f∥ ≤ 2nn
K

j
∥f∥Lip, ∥Pjf∥Lip ≤ 2n+1n∥f∥Lip. (40)

The first one is obvious. The second one follows from the estimate

∥Pjf − f∥=
∑
k

|(f(xk
j )− f(x))ϕk

j (x)| ≤ 2dmax |(f(xk
j )− f(x)|,

where max is over those k that x belongs to the support of ϕk
j . To prove the third inequality of

(40), take arbitrary x, y with |x− y|1 ≤ nK/j. Then

|Pjf(x)−Pjf(y)|=
∑
k

[f(xj
k)ϕ

j
k(x)− f(xj

k)ϕ
j
k(y)].

Here the sum is over not more than 2n+1 lattice points (maximum 2n for either x or y). Let k0 be
one of these points. Then

|Pjf(x)−Pjf(y)|= |
∑
k ̸=k0

[f(xj
k)ϕ

j
k(x)− f(xj

k)ϕ
j
k(y)]+ f(xj

k0
)(
∑
k ̸=k0

ϕj
k(y))−

∑
k ̸=k0

ϕj
k(y))|

= |
∑
k ̸=k0

(f(xj
k)− f(xj

k0
))(ϕj

k(x)−ϕj
k(y))| ≤ 2n+1∥f∥Lip

K

j
n
j

K
|x− y|1,

yielding the third estimate of (40). From (40) it follows that

dbLip∗(P
∗
j µ1, P

∗
j µ2)≤ 2n+1ndbLip∗(µ1, µ2), ∥Fj∥weakLip ≤ 2n+1n∥F∥weakLip, (41)
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dbLip∗(P
∗
j µ,µ)≤ 2nn

K

j
, ∥Fj(µ)−F (µ)∥ ≤ 2nn

K

j
∥F∥weakLip. (42)

Now Fj(µ) can be written as some function Fj(µ) = fj({(ϕj
k, µ)}) of (j+1)n variables uj = {uj

k =
(ϕj

k, µ)} such that

|fj(uj1)− fj(u
j2)| ≤ 2n+1n∥F∥weakLip∥

∑
(uj1

k −uj2
k )δ

x
j
k
∥bLip∗ ≤ 2n+1n∥F∥weakLip∥uj1 −uj2∥1.

Thus f is Lipschitz in u and we can apply the same smooth approximation as in the proof of
Theorem 1 above. Here the dimension becomes essential. Namely, using literally the same argument
as in Theorem 1 we obtain

|Eg(X∗
N(t, δx(N)/N))− g(µt(δx(N)/N))|

≤ tC(ω, t)

(
1

j
+ ϵ(N)+ δ(j+1)n +

1

δN

)
(∥g∥C2

weak
+ ∥g∥weakLip). (43)

Choosing j = Nβ and δ = N−(1−β) with β = 1/(2 + n) makes the rates of decay of 1/j, δjn and
1/(Nδ) equal yielding (36).
Finally, if g is assumed to be only weakly Lipschitz, we approximate it by the smooth one, as

above. Thus the rates of convergence for g become of order

[jnδ̃+ t(ϵ(N)+ 1/j+ δjn +1/(Nδδ̃))]∥g∥bLip.

Choosing
j = (tN)1/(2n+3), δ= j−(n+1), δ̃= tδ= tj−(n+1)

makes the decay rate of all terms (apart from ϵ(N)) equal yielding (37) and completing the proof.
The extension of Theorem 2 to the present case is as follows.

Theorem 5. A (non-negative) measure µ is a singular point of (34), that is, it satisfies∫
y∈Z

[R(z,µ, b∗(µ))−R(y,µ, b∗(µ))]µ(dy)µ(dz) = 0, (44)

if and only if the function R(., µ, b∗(µ)) is constant on the support of µ.

D enoting

∥µ∥=
∫
Z

µ(dy), (R,µ) =

∫
Z

R(y,µ, b∗(µ))µ(dy),

equation (44) rewrites as

R(z,µ, b∗(µ))µ(dz) =
(R,µ)

∥µ∥
µ(dz), (45)

and the result follows.
The corresponding extension of Theorem 3 is now also straightforward.

3.2. Optimal allocation So far our small players were indistinguishable. However, in many
cases the small players can belong to different types. These can be inspectees with various income
brackets, the levels of danger or overflow of particular traffic path, or the classes of computers
susceptible to infection. In this situation the problem for the principal becomes a policy problem,
that is, how to allocate efficiently her limited resources. Our theory extends to a setting with
various types more-or-less straightforwardly. We shall touch it briefly.
Let our players, apart from being distinguished by states i∈ {1, · · · , d}, can be also classified by

their types or classes α ∈ {1, · · · ,A}. The state space of the group becomes Zd
+ ×ZA

+, the set of
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matrices n= (niα), where niα is the number of players of type α in the state i (for simplicity of
notation we identify the state spaces of each type, which is not at all necessary). One can imagine
several scenarios of communications between classes, two extreme cases being as follows:
(C1) No-communication: the players of different classes can neither communicate nor observe

the distribution of states in other classes, so that the interaction between types arises exclusively
through the principal;
(C2) Full communication: the players can change both their types and states via pairwise

exchange of information, and can observe the total distribution of types and states.
There are lots of intermediate cases, say, when types form a graph (or a network) with edges

specifying the possible channels of information. Let us deal here only with cases (C1) and (C2).
Starting with (C1), let Nα denote the number of players in class α and nα the vector {niα}, i=
1, · · · , d. Let xα = nα/Nα,

x= (xiα) = (niα/Nα)∈ (Σd)
A,

and b= (b1, · · · , bA) be the vector of the allocation of resources of the principal, which may depend
on x. Assuming that the principal uses the optimal policy

b∗(x) = argmaxB(x, b) (46)

arising from some concave (in the second variable) payoff function B on (Σd)
A×RA, the generator

(2) extends to

Lb∗,Nf(x) =
A∑

α=1

Nακα

∑
i,j:Rα

j (xα,b∗(x))>Rα
i (xα,b∗(x))

xiαxjα

×[Rα
j (xα, b

∗(x))−Rα
i (xα, b

∗(x))][f(x− eαi /Nα + eαj /Nα)− f(x)], (47)

where eαi is now the standard basis inRd×RA. Passing to the limit asN →∞ under the assumption
that

lim
N→∞

Nα/N = ωα

with some constants ωα we obtain a generalization of (6) in the form

ẋjα =καωα

∑
i

xiαxjα[R
α
j (xα, b

∗(x))−Rα
i (xα, b

∗(x))], (48)

for j = 1, ..., d and α= 1, · · · ,A, coupled with (46).
In case (C2), x= (xiα)∈Σdα, the generator becomes

Lb∗,Nf(x) =
A∑

α,β=1

Nκ
∑

i,j:Rα
j (x,b∗(x))>R

β
i (x,b

∗(x))

xiαxjα

×[Rα
j (x, b

∗(x))−Rβ
i (x, b

∗(x))][f(x− eβi /Nα + eαj /Nα)− f(x)], (49)

and the limiting system of differential equations

ẋjα =κ
∑
i,β

xiβxjα[R
α
j (x, b

∗(x))−Rβ
i (x, b

∗(x))]. (50)
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3.3. Group interaction So far we have assumed that the propagation of strategies is due to
pairwise interaction (say, exchange of opinions). Let us now extend the model by allowing simulta-
neous interactions in groups of arbitrary size, with appropriate scaling that makes the contribution
of simultaneous group interaction comparable with the contribution of pairwise exchange. For
humans this kth order interaction seems to be even more realistic than in chemistry, where similar
considerations leads to the so-called mass-action law for the rates of chemical reactions, see [42]
for the latter. Equations (54) below can be considered as a performance of the ’mass action law
for agents’ playing against the principal.
Assume that any collection of k small players {i1, · · · ik}, with k not exceeding certain level K,

can be formed randomly with uniform distribution (any collection of k players is equally likely)
and exchange opinions with the effect that all members of the group will accept the strategy j
of the member with the highest payoff, so that Rj(x, b) = maxlRil(x, b), with some rates ΠI =
Π(Ri1 , · · · ,Rik), which are symmetric functions of their arguments that vanish whenever all Ril(x, b)
are equal. If there are several members of the group with the same payoff, the choice can be fixed
arbitrary, say by choosing the member with the highest index i. For simplicity (to shorten the
formulas below) let us assume that only the players from different states can interact. Therefore,
instead of a Markov chain with generator (2), we obtain the chain with the generator

Lb,Nf(n) =Nκ
K∑

k=2

∑
I={i1,··· ,ik}

k∏
l=1

xilΠI [f(x+ kej(I)/N −
∑
i∈I

ei/N)− f(x)], (51)

where I are now all possible subsets of {1, · · · , d} of size k.
Assuming again that limN→∞ b(x,N) = b(x) exists and that f ∈C1(Σd), we find now, analogously

to the calculations with (2) (that is by expanding f in Taylor series), that

lim
N→∞, n/N→x

Lb,Nf(n/N) = Λbf(x),

where

Λbf(x) =κ
K∑

k=2

∑
I={i1,··· ,ik}

ΠI

[
k

∂f

∂xj(I)

−
∑
i∈I

∂f

∂xi

]
(x)

k∏
l=1

xil , (52)

or equivalently

Λbf(x) =
K∑

k=2

κ
d∑

m=1

∂f

∂xm

(x)xm

k ′∑
I={i1,··· ,ik−1}

ΠmI

∏
i∈I

xi −
∑

I={i1,··· ,ik−1}:m/∈I

ΠmI

∏
i∈I

xi

 , (53)

where
∑′

denotes the sum over subsets I = (i1 · · · ik−1) such that for each l either Ril < Rm or
Ril =Rm and il <m. The corresponding system of ODEs becomes

ẋm =
K∑

k=2

κxm

k ′∑
I={i1···ik−1}

ΠmI

∏
i∈I

xi −
∑

I={i1···ik−1}:m/∈I

ΠmI

∏
i∈I

xi

 , (54)

with m= 1, · · · , d.
The analog of Theorem 1 can now be easily given with the limiting deterministic dynamics being

(54).
It would be of course desirable to get some empirical data on the transition probabilities for kth

order interactions.

4. Introducing a forward-looking principal
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4.1. Discrete time Here we start exploiting another setting for the major player behavior.
We shall assume that changing strategies bears some costs, so that instantaneous adjustments of
policies become unfeasible and that the major player has some planning horizon with both running
and (in case of a finite horizon) terminal costs. For instance, running costs can reflect real spending
and terminal cost some global objective, like reducing the overall crime level by a specified amount.
This setting will lead us to the class of problem that can be called Markov decision (or control)
processes (for the principal) on the evolutionary background (of permanently varying profiles of
small players).
We shall confine ourselves to the case of a finite-state-space of small players, so that the state

space of the group is given by vectors x= (n1, · · · , nd)/N from the lattice Zd
+/N (see Subsection

2.1). The extension to an arbitrary compact state-space is straightforward via Theorem 4.
Starting with a discrete time case, we denote by XN(t, x, b) the Markov chain generated by (2)

with a fixed b, that is by the operator

Lb,Nf(x) =N
∑

i,j:Rj(x,b)>Ri(x,b)

κxixj[Rj(x, b)−Ri(x, b)]
[
f
(
x− ei

N
+

ej
N

)
− f(x)

]
, (55)

and starting in x ∈ Zd
+/N at the initial time t= 0. We assume that the principal is updating her

strategy in discrete times {kτ}, k= 0,1, · · · ..., n−1, with some fixed τ > 0, n∈N aiming at finding
a strategy π maximizing the reward

V π,N
n (x(N)) =EN,x(N) [τB(x0, b0)+ · · ·+ τB(xn−1, bn−1)+V0(xn)] , (56)

where B and V0 are given functions (the running and the terminal payoff), x0 = x(N)∈Zd
+/N also

given,

xk =XN(τ,xk−1, bk−1), k= 1,2, · · · ,

and bk = bk(xk) are specified by the strategy π as some functions depending on the current state x=
xk (EN,x(N) denotes the expectation specified by such process). By the basic dynamic programming
(see again [45]) the maximal rewards V N

n (x(N)) = supπ V
π,N
n (x(N)) at different times k are linked

by the optimality equation V N
k = S[N ]V N

k−1, where the Shapley operator S[N ] (sometimes referred
to as the Bellman operator) is defined by the equation

S[N ]V (x) = sup
b

[τB(x, b)+EV (XN(τ,x, b))] , (57)

so that Vn can be obtained by the nth iteration of the Shapley operator:

V N
n = S[N ]V N

n−1 = Sn[N ]V0. (58)

Alternatively, in the infinite-horizon version, the principal can be interested in maximizing the
discounted sum

V π,N(x(N)) =EN,x(N)

∞∑
k=0

βkB(xk, bk), (59)

with a β ∈ (0,1), or any other criterion on the infinite horizon path. Recall also that we assume b
to belong to a certain convex compact subset of a Euclidean space.
We are again interested in the law of large numbers limit N →∞, where we expect the limiting

problem for the principal to be the maximization of the reward

V π
n (x0) = τB(x0, b0)+ · · ·+ τB(xn−1, bn−1)+V0(xn), (60)
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or respectively

V π(x) =
∞∑
k=0

βkτB(xk, bk) (61)

in the discounted infinite-horizon problem, where

x0 = lim
N→∞

x(N) (62)

(which is supposed to exist) and

xk =X(τ,xk−1, bk−1), k= 1,2, · · · , (63)

with X(t, x, b) denoting the solution to the characteristic system (or kinetic equations)

ẋj =
∑
i

κxixj[Rj(x, b)−Ri(x, b)], j = 1, ..., d, (64)

with the initial condition x at time t= 0. Again by dynamic programming, the maximal reward
in this problem Vn(x) = supπ V

π
n (x) is obtained by the iterations of the corresponding Shapley

operator, Vn = SnV0, with

SV (x) = sup
b

[τB(x, b)+V (X(τ,x, b))] . (65)

Especially for the application to the continuous time models it is important to have estimates
of convergence uniform in n= t/τ for bounded total time t= nτ .

Theorem 6. (i) Assume the functions Ri(x, b) and B(x, b) belong to CbLip(Σd) as the functions
of the first variable with the norm uniformly bounded with respect to the second variable. Assume
also (62) holds. Then, for any Lipschitz function V0 on Σd, τ > 0 and n∈N ,

|V N
n (x(N))−Vn(x)| ≤C(t)(|x(N)−x|+ t2/3(n/N)1/3)∥V0∥bLip, (66)

where t= nτ is the total time. In particular, for n=Nω with ω ∈ (0,1), the last term on the r.h.s.
of (66) becomes of order N−(1−ω)/3.
(ii) If there exists a Lipshitz continuous optimal policy π= {bk(x)}, k= 1, · · · , n, for the limiting

optimization problem, then π is approximately optimal for the N -agent problem, in the sense that
for any ϵ > 0 there exists N0 such that, for all N >N0,

|V N
n (x(N))−V N,π

n (x(N))| ≤ ϵ.

( i) Assume V0 is Lipschitz with some Lipschitz constant κ. This implies that all functions Vk(x)
are uniformly Lipschitz continuous. In fact,

|SV (x1)−SV (x2)| ≤ sup
b

|τB(x1, b)+V (X(τ,x1, b))− τB(x2, b)−V (X(τ,x2, b))|

≤κBτ |x1 −x2|+κeτF |x1 −x2|,

where κB is the Lipschitz constant for B and F is the Lipschitz constant of the function on the
r.h.s. of (64) (as a functions of x). Thus the Lipschitz constant of Vk = SkV0 is bounded by a
constant C(t). Notice also that, since the function B is uniformly bounded, all V N

k and Vk are
uniformly bounded, say by some constant v.
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Next we can write

Sn[N ]V0 −SnV0 =
n−1∑
j=0

Sj[N ](S[N ]−S)Sn−(j−1)[N ]V0.

Consequently,
∥Sn[N ]V0 −SnV0∥ ≤ n sup

k=1,·,n
∥(S[N ]−S)SkV0∥.

Since the uniform estimate of the difference of two functions of b implies the same estimate for the
difference of the maxima, it follows from Theorem 1 that

∥Sn[N ]V0 −SnV0∥ ≤ nC(t)τ 2/3N−1/3∥V0∥bLip.

yielding (66).
(ii) One shows as above that for any Lipschitz continuous policy π, the corresponding value

functions V π,N converge. Combined with (i), this yields Statement (ii).
Remark 6. For a compact state space being a subset of Rn one would get for the last term of

the r.h.s. of (66) the decay estimate of order t1−1/(2n+3)(n/N)1/(2n+3).
Since the tails of series (61) and (59) tend to zero uniformly, the following fact is a consequence

of Theorem 6.

Theorem 7. Under the assumptions of Theorem 6 the discounted optimal rewards (59) con-
verge, as N →∞, to the discounted reward (61).

Analyzing long time behavior of the optimal dynamics given by Theorem 6 leads one naturally
to the analysis of the fixed points of equation (64) and their turnpike properties. Namely, let X[b]
denote the set of fixed points of (64) for given b. If

supB(x, b) =max
b

max
x∈X[b]

B(X[b], b), (67)

the points of maximum on the r. h. s. can be expected to serve as turnpikes (introduced in economics
by [32], see recent reviews e. g. in [90] and [62]) for long time behavior of optimal problems arising
from the limiting evolution of (64). How this fact is recast in terms of the Markov decision process
with N players is an interesting problem for what one can characterize as the turnpike theory for
Markov control on evolutionary background. We shall not touch it here.

4.2. Continuous time Here we initiate the analysis of the optimization problem for a
forward-looking principal in continuous time choosing the most transparent deterministic evolution
of the principal. Namely, let the efforts (budget) b of the major player evolve according to the
equation ḃ = u with control u from a compact convex set U ∈Rr. The state space of the group
being again given by vectors x = (n1, · · · , nd)/N from the lattice Zd

+/N , the payoff of the major
player will be given by ∫ T

t

J(x(s), (b(s), u(s))ds+ST (x(T ), (b(T ))

where J,ST are some continuous functions uniformly Lipschitz in all their variables. The optimal
payoff of the major player is thus

SN(t, x(N), b) = sup
u(.)∈Ũ

EN
x(N),b

{∫ T

t

J(x(s), (b(s), u(s))ds+ST (x(T ), (b(T ))

}
, (68)

where EN
x,b is the expectation of the corresponding Markov process starting at the position (x, b)

at time t, and Ũ is some class of controls (not relevant here, as we shall analyse only a discrete
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time version of this problem). We are now in the standard Markov decision setting of a controlled
Markov process generated by the operator Lb,N from (2), or more precisely

Lb,NSN(t, x, b) =N
∑

i,j:Rj(x,b)>Ri(x,b)

κxixj

×[Rj(x, b)−Ri(x, b)][SN(t, x− ei/N + ej/N, b)−SN(t, x, b)]. (69)

As N →∞, the dimension of vectors x tends to infinity making direct calculations complicated.
As seen from (11), the operators Lb,N tend to a simple first order PDO, so that the limiting

optimization problem of the major player turns out to be the problem of finding

S(t, x, b) = sup
u(.)∈Ũ

{∫ T

t

J(x(s), b(s), u(s))ds+ST (x(T ), (b(T ))

}
, (70)

where (x(s), (b(s)) (depending on u(.)) solve the system of equations ḃ= u and

ẋj =
∑
i

κxixj[Rj(x, b)−Ri(x, b)], j = 1, ..., d.

The well-posedness of this system is a straightforward extension of the well-posedness of equations
(6).
Instead of proving the convergence SN(t, x(N), b)→ S(t, x, b), we shall concentrate on a more

practical issue comparing the corresponding discrete time approximations, as these approximations
are usually exploited for practical calculations of SN or S.

The discrete-time approximation to the limiting problem of finding (70) is the problem of finding

Vt,n(x, b) = sup
π

V π
t,n(x, b) = sup

π
[τJ(x0, b0, u0)+ · · ·+ τJ(xn−1, bn−1, un−1)+V0(xn, bn)] , (71)

where τ = (T − t)/n, (x0, b0) = (x, b), V0(x, b) = ST (x, b) and

bk = bk−1 +uk−1τ, xk =X(τ,xk−1, bk−1), k= 1,2, · · · , (72)

with X(t, x, b) solving equation (64) with the initial condition x at time t= 0. The discrete-time
approximation to the initial optimization problem is the problem of finding

V N
t,n(x0, b0) = sup

π
V π,N
t,n (x0, b0)

= sup
π

EN,x(N),b [τJ(x0, b0, u0)+ · · ·+ τJ(xn−1, bn−1, un−1)+V0(xn, bn)] , (73)

where xk = XN(τ,xk−1, bk−1) with XN(t, x, b) denoting the Markov process with generator (55).
The strategies π here specify the choice of control parameters uk based on the previous information.
Remark 7. It is well known that Vn(x, b) and V N

n (x, b) with V0 = ST approach the optimal
solutions S(T − t, b, x) and SN(T − t, x, b) given by (70) and (68) respectively, see e. g. Theorem
4.1 of [37] or Theorem 3.4 of [60].

Theorem 8. Recall that J,ST are uniformly Lipschitz in all their variables. Then, for any x
and t∈ [0, T ]

|V N
t,n(x)−Vt,n(x)| ≤C(T )(T − t)2/3(n/N)1/3∥V0∥bLip. (74)

T his is a direct consequence of Theorem 6 (i). The only difference is the use of control parameter
that is distinct from the state b, but this does not affect the proof.
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5. Models of growth under pressure

5.1. General convergence result for evolutions in l1 Here we extend the results of Sub-
section 4.1 in two directions, namely, by working with a countable (rather than finite or compact)
state-space and unbounded rates, and with more general interactions allowing in particular for a
change in the number of particles.
Therefore we take the set of natural numbers {1,2, · · · } as the state space of each small player,

the set of finite Borel measures on it being the Banach space l1 of sumable real sequences x =
(x1, x2, · · · ).

Thus the state space of the total multitude of small players will be formed by the set Zfin
+

of sequences of integers n = (n1, n2, · · · ) with only finite number of non-vanishing ones, with nk

denoting the number of players in the state k, the total number of small players being N =
∑

k nk.
As we are going to extend the analysis to processes not preserving the number of particles, we shall
work now with a more general scaling of the states, namely with the sequences

x= (x1, x2, · · · ...) = hn= h(n1, n2, · · · ...)∈ hZfin
+

with certain parameter h> 0, which can be taken, for instance, as the inverse number to the total
number of players

∑
k nk at the initial moment of observation. The necessity to distinguish initial

moment is crucial here, as this number changes over time. Working with the scaling related to the
current number of particles N may lead, of course, to different evolutions.
The general processes of birth, death, mutations and binary interactions that can occur under an

influence b of the principal are Markov chains on hZfin
+ specified by the generators of the following

type

Lb,hF (x) =
1

h

∑
j

βj(x, b)[F (x+hej)−F (x)]+
1

h

∑
j

αj(x, b)[F (x−hej)−F (x)]

+
1

h

∑
i,j

α1
ij(x, b)[F (x−hei +hej)−F (x)]+

1

h

∑
i,(j1,j2)

α1
i(j1j2)

(x, b)[F (x−hei +hej1 +hej2)−F (x)]

+
1

h

∑
(i1,i2),j

α2
(i1i2)j

(x, b)[F (x−hei1 −hei2 +hej)−F (x)]

+
1

h

∑
(i1,i2)

∑
(j1,j2)

α2
(i1i2)(j1j2)

(x, b)[F (x−hei1 −hei2 +hej1 +hej2)−F (x)], (75)

where brackets (i, j) denote the pairs of states. Here the terms with βj and αj describe the spon-
taneous injection (birth) and death of agents, the terms with α1 describe the multiplication or
mutations of single agents (including fragmentation and splitting), the terms with α2 describe the
binary interactions, with all terms including possible mean-field interactions. Say, our model (2)
was an example of binary interaction.
Let L be a positive increasing function on N such that L(j)→∞ as j →∞. We shall refer to

such functions as Lyapunov functions. Notations from Appendix B will be used here for different
norms and notions related to a Lyapunov function L (see (122) and the discussion around it). We
say that the generator Lb,h with βj = 0 and the corresponding process do not increase L if for
any allowed transition the total value of L cannot increase, that is if α1

ij ̸= 0, then L(j)≤ L(i), if
α1

i(j1,j2)
̸= 0, then L(j1) +L(j2)≤ L(i), if α2

(i1i2)j
̸= 0, then L(j)≤ L(i1) +L(i2), if α

2
(i1i2)(j1j2)

̸= 0,
then L(j1) + L(j2) ≤ L(i1) + L(i2). If this is the case, then the chains generated by Lb,h always
remain in a ball B+(L,R), if they were started there. Hence for any h and R, Lb,h generates
a well-defined Markov chains Xb,h(t, x) in any of the finite state-spaces hZfin

+ ∩ B+(L,R) (the
corresponding Kolmogorov Q-matrices are transpose to the matrices representing Lb,h).
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A generator Lb,h is called L-subcritical if Lb,h(L)≤ 0. Of course, if Lb,h does not increase L, then
it is L-subcritical. Though the condition to not increase L seems to be restrictive, many concrete
models satisfy it, for instance the celebrated merging-splitting (Smoluchovskii) process considered
below. On the other hand, models with spontaneous injections may increase L, so that one is
confined to work with the weaker property of sub-criticality.
We shall denote by C(B+(L,R)⊂ l1) and Ck(B+(L,R)⊂ l1) the spaces of continuous and dif-

ferentiable functions on B+(L,R) with B+(L,R) considered as a subset of l1, that is, equipped
with the topology of l1, where these sets are easily seen to be compact. Similar notations for
Banach-space valued functions will be used.
By Taylor-expanding F in (75) one sees that if F is sufficiently smooth, the sequence Lb,hF

converges to

ΛbF (x) =
∑
j

(βj(x, b)−αj(x, b))
∂F

∂xi

+
∑
i,j

α1
ij(x, b)[

∂F

∂xj

− ∂F

∂xi

]

+
∑

i,(j1,j2)

α1
i(j1j2)

(x, b)[
∂F

∂xj1

+
∂F

∂xj2

− ∂F

∂xi

] +
∑
(i1,i2)

∑
j

α2
(i1i2)j

(x, b)[
∂F

∂xj

− ∂F

∂xi1

− ∂F

∂xi2

]

+
∑
(i1,i2)

∑
(j1,j2)

α2
(i1i2)(j1j2)

(x, b)[
∂F

∂xj1

+
∂F

∂xj2

− ∂F

∂xi1

− ∂F

∂xi2

]. (76)

Moreover,

∥(Lb,h −Λb)F∥C(B+(L,R)⊂l1) ≤ 8hκ(L,R)∥F∥C2(B+(L,R)⊂l1), (77)

with κ(L,R) being the supb of the norms∥∥∥∥∥∥
∑
i

(αi +βi)+
∑
i,j

α1
ij +

∑
i,(j1,j2)

α1
i(j1j2)

+
∑

(i1,i2),j

α2
(i1i2)j

+
∑

(i1,i2),(j1,j2)

α2
(i1i2)(j1j2)

∥∥∥∥∥∥
C(B+(L,R)⊂l1)

.

By regrouping the terms of Λb, it can be rewritten in the form of the general first order operator

ΛbF (x) =
∑
j

fj(x)
∂F

∂xj

, (78)

where

fi = βi −αi +
∑
k

(α1
ki −α1

ik)+
∑
k

[α1
k(ii) +

∑
j ̸=i

(α1
k(ij) +α1

k(ji)]−
∑

(j1,j2)

α1
i(j1j2)

+
∑

(j1,j2)

α2
(j1j2)i

−
∑
k

[α2
(ii)k +

∑
j ̸=i

(α2
(ij)k +α2

(ji)k)]

+
∑

(j1,j2)

[α2
(j1j2)(ii)

+
∑
j ̸=i

(α2
(j1j2)(ji)

+α2
(j1j2)(ij)

)]

−
∑

(j1,j2)

[α2
(ii)(j1j2)

+
∑
j≠i

(α2
(ij)(j1j2)

+α2
(ji)(j1j2)

)].

Its characteristics solving the ODE ẋ= f(x) can be expected to describe the limiting behavior
of the Markov chains Xb,h(x, t) for h→ 0.
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Theorem 9. Assume the operators Lb,h are L non-increasing for a Lyapunov function L on
Z such that L(j)→∞ as j →∞, the function f : l1+ → l1 is uniformly Lipschitz on B+(R,L) and
κ(Λ,R)<∞. Then the Markov chains Xh(t, x(h)) with x(h) ∈B+(R,L) converge in distribution
to the deterministic evolution X(t, x) solving equation ẋ= f(x) and moreover

|EF (Xh(t, x(h)))−F (X(t, x(h)))| ≤ tC(R, t)
1

N 1/3
∥F∥C2(B+(L,R)⊂l1) (79)

|EF (Xh(t, x(h)))−F (X(t, x(h)))| ≤C(R, t)
t4/5

N 1/5
∥F∥CbLip(B+(L,R)⊂l1) (80)

with constants C(R, t). If f is uniformly twice continuously differentiable, then the same estimates
hold with the improved rates 1/N and 1/N1/3 respectively.

T he proof is similar to the proof of Theorem 4, though the lack of compactness is dealt with
by L-subcritical condition that again allows one to use effective finite-dimensional approximations.
Moreover, discrete setting allows one not to bother about weak topology.
If f is smooth and

∥f∥C2(B+(L,R)⊂l1;l1) ≤D(R),

then the solutions X(t, x) to the equation ẋ= f(x) are twice differentiable with respect to initial
data and the corresponding mapping U t : F (x) 7→ F (X(t, x)) are twice continuously differentiable
by Lemma (1). Hence the estimate

|EF (Xh(t, x(h)))−F (X(t, x(h)))| ≤ tC(R, t)
1

N
∥F∥C2(B+(L,R)⊂l1), (81)

claimed by the last statement of the Theorem, follows directly by (101) and (77).
If f is only Lipschitz continuous we again use a finite-dimensional approximation F (x)→ Fj(x) =

F (P ∗
j (x)), where now P ∗

j is just the projection on the first j coordinates, that is [P ∗
j (x)]k = xk for

k≤ j and [P ∗
j (x)]k = 0 otherwise. For x∈B+(L,R),

∥P ∗
j (x)−x∥l1 ≤

R

L(j)
,

and hence one can further use the smooth approximation Φδ(F ◦ P ∗
j ) with the same effect as in

Theorem 4. The dimension of the image of P ∗
j is j, so the results of Theorem 4 apply with n= 1

yielding (79) and (80).
Assume now that the principal is updating her strategy in discrete times {kτ}, k= 0,1, · · · ..., n−

1, with some fixed τ > 0, n ∈N aiming at finding a strategy π maximizing the reward (56), but
now with x0 = x(h)∈ hZfin∩B+(L,R). Using Theorem 9, It is straightforward to extend Theorem
6 to the present setting of a countable state-space. Using the same notations as in Theorem 6 for
rewards and Shapley operators yields the following result.

Theorem 10. Assume the conditions of Theorem 9 hold and the function B(x, b) is uniformly
Lipschitz on B+(R,L) as a function of the first variable. Then, for any continuous V0 on B+(R,L),
τ > 0 and n∈N ,

|V N
n (x(N))−Vn(x)| ≤C(t)(|x(N)−x|+ t4/5(n/N)1/5)∥V0∥bLip, (82)

where t= nτ is the total time. In case when f and B are twice continuously differentiable, the rates
of convergence improve to N−1/3.
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5.2. Evolutionary coalition building under pressure As a direct application of Theorem
10, let us discuss the model of evolutionary coalition building. Namely, so far we talked about small
players that occasionally and randomly exchange information in small groups (mostly in randomly
formed pairs) resulting in copying the most successful strategy by the members of the group.
Another natural reaction of the society of small players to the pressure exerted by the principal can
be executed by forming stable groups that can confront this pressure in a more effective manner
(but possibly imposing certain obligatory regulations for the members of the group). Analysis of
such possibility leads one naturally to models of mean-field-enhanced coagulation processes under
external pressure. Coagulation-fragmentation processes are well studied in statistical physics, see
e. g. [75]. In particular, general mass-exchange processes, that in our social environment become
general coalition forming processes preserving the total number of participants, were analyzed in
[51] and [53] with their law of large number limits for discrete and general state spaces. Here we
add to this analysis a strategic framework for a major player fitting the model to the more general
framework of the previous section. Instead of coagulation and fragmentation we shall use here the
terms merging and splitting or breakage.
For simplicity, we ignore here any other behavioral distinctions (assuming no strategic space

for an individual player) concentrating only on the process of forming coalitions. Thus the state
space of the total multitude of small players will be formed by the set Zfin

+ of sequences of integers
n = (n1, n2, · · · ...) with only finite number of non-vanishing ones, with nk denoting the number
of coalition of size k, the total number of small players being N =

∑
k knk and the total number

of coalitions (a single player is considered to represent a coalition of size 1) being
∑

k nk. Also
for simplicity we reduce attention to binary merging and breakage only, extension to arbitrary
regrouping processes from [51] (preserving the number of players) is more-or-less straightforward.

As previously, we will look for the evolution of appropriately scaled states, namely the sequences

x= (x1, x2, · · · ...) = hn= h(n1, n2, · · · ...)∈ hZfin
+

with certain parameter h> 0, which can be taken, for instance, as the inverse number to the total
number of coalitions

∑
k nk at the initial moment of observation.

If any randomly chosen pair of coalitions of sizes j and k can merge with the rates Ckj(x, b),
which may depend on the whole composition x and the control parameter b of the major player,
and any randomly chosen coalition of size j can split (break, fragment) into two groups of sizes
k < j and j−k with rate Fjk(x, b), the limiting deterministic evolution of the state is known to be
described by the system of the so-called Smoluchovski equations

ẋk = fk(x) =
∑
j<k

Cj,k−j(x, b)xjxk−j − 2
∑
j

Ckj(x, b)xjxk +2
∑
j>k

Fjk(x, b)xj −
∑
j<k

Fkj(x, b)xk. (83)

In addition to the well known setting with constant Cjk and Fjk (see e. g. [11]) we added here the
mean field dependence of these coefficients (dependence on x) and the dependence on the control
parameter b.

As one easily checks, equations (83) can be written in the equivalent weak form

d

dt

∑
j

gjxj =
∑
j,k

(gj+k − gj − gk)Cjk(x, b)xjxk +
∑
j

∑
k<j

(gj−k + gk − gj)Fjk(x, b)xj, (84)

which should hold for a suitable class of test functions g. For instance, under the assumption of
bounded coefficients (see (89) below), the class of test functions is the class of all functions from
l∞ = {g : supj |gj| <∞}. This implies, in particular, that the corresponding semigroups (103) on
the space of continuous functions, that is U tG(x) =G(X(t, x)), have the generator

ΛbG(x) =
∑
k

fk(x)
∂G

∂xk

(x) =
∑
j,k

(
∂G

∂xk+j

− ∂G

∂xj

− ∂G

∂xk

)
Cjk(x, b)xjxk
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+
∑
j

∑
k<j

(
∂G

∂xj−k

− ∂G

∂xj

+
∂G

∂xk

)
Fjk(x, b)xj (85)

of type (76) with

α1
i(j1j2)

= Fij1(x)xi for j1 + j2 = i; α2
(i1i2)j

=Ci1i2(x)xi1xi2 for j = i1 + i2

and all other coefficients vanishing.
Let Rj(x, b) be the payoff for the member of a coalition of size j. In our strategic setting, the

rates Cjk(x, b) and Fjk(x, b) should depend on the differences of these rewards before and after
merging or splitting. For instance, the simplest choices can be

Ckj(x, b) = aj+k,k1Rk+j≥Rk
(Rk+j −Rk)+ aj+k,j1Rk+j≥Rj

(Rk+j −Rj), (86)

with some constants alk ≥ 0 reflecting the assumption that merging may occur whenever it is
beneficial for all members concerned but weighted according to the size of the coalitions involved,
where by 1M here and in what follows we denote the indicator function of the set M . Similarly

Fkj(x, b) = ãkj1Rj≥Rk
(Rj −Rk)+ ãk,k−j1Rk−j≥Rk

(Rk−j −Rk). (87)

A Markov approximation to dynamics (83) is constructed in the standard way, which is analo-
gous to the constructions of approximating Markov chains described in the previous section (for
coagulation - fragmentation processes this Markov approximation is often referred to as the Markus-
Lushnikov process, see e.g. [75]), namely, by attaching exponential clocks to any pair of coalitions
that can merge with rates Ckj and to any coalition that can split with rates Fkj. This leads to a
Markov chain Xh(t, x, b) on hZfin

+ with the generator

Lb,hG(x) =
1

h

∑
i,j

Cij(x, b)xixj[G(x−hei −hej +hei+j)−G(x)]

+
1

h

∑
i

∑
j<i

Fij(x, b)xi[G(x−hei +hej +hei+j)−G(x)], (88)

of type (75) with the same identification of coefficients as above.
There exists an extensive literature showing the well -posedness of infinite-dimensional dynamics

(83) and proving the convergence, as h → 0, of Markov chains generated by (88) under various
assumptions on the coefficients C and F (see e. g. [75] and [53] and references therein). However,
to deal with a forward -looking principal, some uniform rates of convergence are needed, like those
of Theorem 9.

We shall propose here only the simplest result in this direction assuming that the intensities of
individual transition are uniformly bounded and uniformly Lipschitz, that is

C = sup
j,k

Cjk(x, b)<∞, F = sup
j

∑
k<j

Fkj(x, b)<∞, (89)

C(1) = sup
b,j,k

∥Cjk(., b)∥CbLip(B+(R,L)⊂l1) <∞,

F (1) = sup
b,j

∑
k<j

∥Fkj(., b)∥CbLip(B+(R,L)⊂l1) <∞.
(90)

Notice however that the overall intensities are still unbounded (quadratic), so that we are still quite
away from the assumptions of Section 4.
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Choosing the function L(j) = j we see that Markov chainsXh(t, x, b) do not increase L. Moreover,
(89) implies

sup
b

∥f(., b)∥C(B+(R,L)⊂l1);l1 ≤ 3CR2 +3FR,

sup
b

∥f(., b)∥CbLip(B+(R,L)⊂l1);l1 ≤ 6CR+3F +3(C(1)R+F (1))R
(91)

and hence the following result.

Theorem 11. For a model of strategically enhanced coalition building subject to (89) and (90)
the conditions of Theorem 9 are satisfied for operators (85) and (88) that represent particular
cases of operators (76) and (75). Hence the corresponding Markov chains Xh(t, x, b) converge to
the deterministic limit governed by the equation ẋ= f(x, b).

5.3. Strategically enhanced preferential attachment on evolutionary background A
natural and useful extension of the theory presented above can be obtained by the inclusion in
our pressure-resistance evolutionary-type game the well known model of linear growth with pref-
erential attachment (Yule, Simon and others, see [86] for review) turning the latter into a strategi-
cally enhanced preferential attachment model that includes evolutionary-type interactions between
agents and a major player having tools to control (interfere into) this interaction. Since the proper
exposition of the corresponding rigorous convergence result requires an extension of Theorem 10
to L-subcritical (rather than L-non-increasing) processes, we shall not present it here, but only
indicate the expected outcomes leaving details to another publication.

We shall work with the general framework of Theorem 10, having in mind that the basic examples
of the approximating Markov chains Xh(t, x(h)) can arise from the merging and splitting coalition
model of the previous section (with generator (88)) or from setting (55), where now the number of
possible states j becomes infinite and hence, assuming for simplicity that the agents are identical
so that the parameter j denotes the size of the coalition, generator (55) becomes

Lb,hG(x) =
1

h

∑
i,j:Rj(x,b)>Ri(x,b)

κxixj[Rj(x, b)−Ri(x, b)][G (x−hei +hej)−G(x)], (92)

where Rj(x, b) is the payoff to a member of a coalition of size j = 1,2, · · · . The Markov chain
with generator (92) describes the process where agents can move from one coalition to another
choosing the size of the coalition that is more beneficial under the control b of the principal. Of
course one can work also with various combinations of generators (92) and Λb,h from (88), as well
as with their various extensions including, say, kth order interactions, see (51), or various classes
(for instance, levels of activity) of agents, where coalitions get another interpretation as groups of
agents following certain particular strategy.
The most studied form of preferential attachment evolves by the discrete time injections of

agents (see [13], [31], [86] and references therein). Along these lines, we can assume that with time
intervals τ a new agent enters the system in such a way that with some probability α(x, b) (which,
unlike the standard model, can now depend on the distribution x and the control parameter b of
the principal) she does not enter any of the existing coalitions (thus forming a new coalition of
size 1), and with probability 1− α(x, b) she joins one of the coalitions, the probability to join a
coalition being proportional to its size (this reflects the notion of preferential attachment coined
in [13]). Thus if V (x) is some function on the state space hZfin

+ , its expected value after a single
entry changing x to x̂ is descried by the following operator Th:

ThV (x) =EV (x̂) = αV (x+he1)+ (1−α)
∞∑
k=1

knk

L(n)
V (x−hek +hek+1), (93)
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where L(n) =
∑

knk, x= nh.
A continuous time version of these evolutions can be modeled by a Markov process, where the

injection occurs with some intensity λ(x, b) (that can be influenced by the principal subject to
certain costs). In other words, it can be included by adding to generator (92) or (88) the additional
term of the type

Λatt
b,hG(x) =

αλ(b,x)

h
[G(x+he1)−G(x)]+

(1−α)λ(b,x)

h

∞∑
k=1

kxk[G(x−hek +hek+1)−G(x)].

The limiting evolution will then be given by the equation

ẋ= f(x)+αλ(b,x)
∂G

∂x1

+(1−α)λ(b,x)
∞∑
k=1

kxk

[
∂G

∂xk+1

− ∂G

∂xk

]
, (94)

where f(x) is obtained from the limit of (92) or (88). A strategically enhanced preferential attach-
ment model on the evolutionary background will thus be described, in the dynamic law of large
number limit, by the controlled infinite-dimensional ODEs (94) (via discrete or continuous-time
choice of parameter b by the principal).
As we mentioned, a rigorous proof of the convergence is beyond the scope of this paper. Apart

from sorting out this problem, an important issue is to understand the controllability of the limiting
(now in the sense t→∞) stationary solutions, which may lead to the possibility to develop tools for
influencing the power tails of distributions (Zipf’s law) appearing in many situations of practical
interest, as well as the proliferation or extinction of certain desirable (or undesirable) characteristics
of the processes of evolution.

6. Appendix

6.1. Notations for functional spaces and measures Notations introduced here are used
in the main text systematically without further reminder.
For a metric space Z with a metric ρ, let C(Z) denote the space of bounded continuous func-

tions equipped with the sup-norm: ∥f∥= supx |f(x)|, CbLip(Z) the subspace of bounded Lipschitz
functions with the norm

∥f∥bLip = ∥f∥+ ∥f∥Lip, ∥f∥Lip = sup
x̸=y

|f(x)− f(y)|
ρ(x, y)

. (95)

We may write shortly Ck or CbLip if it is clear which Z we are working with.
Since we often interpret our vectors as measures, for Euclidean space Z, it is convenient to use

the l1-norm |x|1 =
∑

j |xj| for vectors x∈Z, so that for functions on Rn we define

∥f∥Lip = sup
x ̸=y

|f(x)− f(y)|
|x− y|1

= sup
j

sup
|f(x)− f(y)|

|xj − yj|
, (96)

where the last sup is the supremum over the pairs x, y that differ only in its jth coordinate.
For Z a closed convex subset of Rn, let Ck(Z) denote the space of k times continuously differ-

entiable functions on Z with uniformly bounded derivatives equipped with the norm

∥f∥Ck(Z) = ∥f∥+
k∑

j=1

∥f (j)∥,

where ∥f (j)∥ is the supremum of the magnitudes of all partial derivatives of f of order j. In
particular, for a differentiable function, ∥f∥C1 = ∥f∥bLip.
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For Z a closed convex subset of a Banach space B, the directional derivative of a real function
F on Z at x in the direction ξ ∈Z −x is defined as

DξF (x) =DF (x)[ξ] = lim
h→0+

F (x+hξ)−F (x)

h
, (97)

and higher order derivatives are defined recursively, for instance the second derivative is

D2F (x)[ξ, η] =D (DF (x)[ξ]) [η], ξ, η ∈Z −x.

The spaces Ck(Z), k ∈ N of continuously differentiable functions are the subsets of functions
from C(Z) with the derivatives of order up to k well defined and continuous with respect to all
their variables and having finite norms

∥F∥Ck(Z) = ∥F∥+
k∑

l=1

sup
x∈Z

sup
ξj :∥ξj∥=1

|DlF (x)[ξ1, · · · , ξl]|,

Similarly the differentiability of the Banach-space-valued functionals F :Z →B1 and the corre-
sponding spaces C(Z;B1), C

k(Z;B1) are defined for any other Banach space B1.
For instance, if B = l1, then

∥F∥C1(Z) = ∥F∥+sup
x∈Z

sup
k

∣∣∣∣ ∂F∂xk

∣∣∣∣ , (98)

and

∥F∥C2(Z) = ∥F∥C1(Z) +sup
x∈Z

sup
k,l

∣∣∣∣ ∂2F

∂xk∂xl

∣∣∣∣ . (99)

For a locally compact metric space Z we denote by M(Z) (resp. M+(Z)) the Banach space of
signed finite Borel measures on Z (resp. its subset of non-negative measures), by Mλ(Z) the ball
of radius λ there, with M+

λ (Z) =Mλ(Z)∩M+(Z). According to the Riesz-Markov Theorem, the
Banach space M(Z) is the Banach dual to the space C∞(Z), which is the subspace of functions
from C(Z) vanishing at infinity.
For a function f on Z and a measure µ (not necessarily bounded) we use the scalar-product

notations (f,µ) =
∫
f(z)µ(dz) for the natural pairing, whenever it is well defined.

By the celebrated Kantorovich theorem, the weak topology on M+(Z) can be metricized via the
duality relation with the space CbLip(Z), that is, via the metric

dbLip∗(µ,ν) = ∥µ− ν∥bLip∗ = sup
f :∥f∥bLip≤1

∫
Z

f(z)(µ− ν)(dz).

For a closed convex subset S of M+(Z) we shall denote by Cweak(S) the closed subset of C(S)
consisting of weakly continuous functions. We shall denote by CbLip

weak(S) the space of weakly Lip-
schitz functions F on S (which are Lipschitz with respect to dbLip∗). We shall denote ∥F∥weakLip

the corresponding Lipschitz constant and ∥F∥weakbLip = ∥F∥+ ∥F∥weakLip the norm in CbLip
weak(S).

Remark 8. Linguistically counterintuitive, the weak continuity is a stronger requirement than
just continuity. For any bounded measurable ϕ, the linear functional F (µ) = (ϕ,µ) =

∫
ϕ(z)µ(dz)

on M(Z) is continuous and continuously differentiable of all orders in the norm topology with
DF (x)[ξ] = (ϕ, ξ), D2F (x) = 0. On the other hand, this F (µ) is weakly continuous only if ϕ is
continuous and weakly-∗ continuous if additionally ϕ(z)→ 0 for z →∞. It is weakly Lipschitz, if
ϕ ∈ CbLip(Z). Only for discrete countable Z, the linear functionals on the space M(Z) = l1 are
continuous in the norm if and only if they are weakly continuous. This often allows one to avoid
using weak topology for l1.
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We recall for reference the following simple and standard general formula for the comparison of
arbitrary operator semigroups UN and U with generators LN and L respectively:

UT−t
N g−UT−t =U s−t

N UT−s|Ts=t =

∫ T

t

U s−t
N (LN −L)UT−s ds. (100)

When UN as a contraction in a space of bounded functions, it implies

∥UT−t
N g−UT−tg∥ ≤ (T − t) sup

s∈[t,T ]

∥(LN −L)UT−sg∥. (101)

6.2. Sensitivity of ODEs in Banach spaces Here we put together, in a concise way, certain
basic facts on the sensitivity of ODEs in Banach space with an unbounded (in particular quadratic)
r.h.s., the main example of interest for us being the Banach space l1 and the evolutions satisfying
(125).

Let B be a Banach space equipped with the norm ∥.∥B and B+ its certain convex cone. We
shall write shortly ∥.∥ for ∥.∥B when no confusion arises. Let B(R) denote the ball of radius R in
B centered at the origin and B+(R) =B+ ∩B(R). For a linear operator A :B →B we denote by
∥A∥B→B its operator norm.
Let us consider an ordinary differential equation (ODE) ẋ= f(x) in B with a locally Lipschitz,

but generally unbounded f such that for any x ∈ B+(R) the global solution X(t, x) is uniquely
defined with

X(t, x)∈B+(e
at(∥x0∥+ bt)) (102)

for some constants a, b. Lemma 5 below motivates the use of condition (102).
Under (102), the linear operators U t:

U tF (x) = F (X(t, x)), t≥ 0, (103)

are well defined contractions in C(B+) forming a semigroup. In case a= b= 0, the operators U t

form a semigroup of contractions also in C(B+(R)) for any R.

Lemma 1. Under (102) assume additionally that f is twice continuously differentiable as a
mapping on B+ such that for any R and all x∈B+(R),

∥f∥C1(B+(R);B) ≤D1(R), ∥f∥C2(B+(R);B) ≤D2(R), (104)

with some continuous functions D1(R),D2(R). Then the solutions to ẋ= f(x) are twice continu-
ously differentiable with respect to initial data and

∥X(t, .)∥C1(B+(R);B) ≤ exp
{
tD1(e

at(R+ bt))
}
,

∥X(t, .)∥C2(B+(R);B) ≤ tD2(e
at(R+ bt)) exp

{
3tD1(e

at(R+ bt))
}
. (105)

Moreover,
∥U tF∥C1(B+(R)) ≤ exp

{
tD1(e

at(R+ bt))
}
∥F∥C1(B+(eat(R+bt))), (106)

∥U tF∥C2(B+(R)) ≤ (1+ tD2(e
at(R+ bt))) exp

{
3tD1(e

at(R+ bt))
}
)∥F∥C2(B+(eat(R+bt))). (107)

D ifferentiating the equation ẋ= f(x) with respect to initial conditions yields

d

dt
DX(t, x)[ξ] =Df(X(t, x))[DX(t, x)[ξ]] =Df(X(t, x)) ◦DX(t, x)[ξ] (108)

d

dt
D2X(t, x)[ξ, η] =D2f(X(t, x))[DX(t, x)[ξ],DX(t, x)[η]] +Df(X(t, x))[D2X(t, x)[ξ, η]]. (109)



Pressure and resistance game: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, c⃝ 0000 INFORMS 33

Since the initial conditions to these equations are DX(0, x)[ξ] = ξ, D2X(0, x)[ξ, η] = 0, one deduces
(105) from (104).

Differentiating (103) yields

D(U tF )(x)[ξ] =DF (X(t, x))[DX(t, x)[ξ]], (110)

D2(U tF )(x)[ξ, η] =DF (X(t, x))[DX(t, x)[ξ],DX(t, x)[η]] +DF (X(t, x))[D2X(t, x)[ξ, η]] (111)

implying (106) and (107).

6.3. Variational derivatives We recall here some facts about variational derivatives of the
functionals on measures. As a consequence, we deduce the asymptotic formula for the generator of
our basic model.
For a function F on a convex closed subset S of M(Z) with a locally compact metric space Z

the variational derivative δF (Y )

δY (x)
is defined as the directional derivative of F (Y ) in the direction δx:

δF (Y )

δY (x)
=DδxF (Y ) = lim

s→0+

1

s
(F (Y + sδx)−F (Y )). (112)

The higher derivatives δlF (Y )/δY (x1)...δY (xl) are defined inductively.
As it follows from the definition, if δF (Y )/δY (.) exists for x ∈ Z and depends continuously on

Y (in weak or norm topology), then the function F (Y + sδx) of s ∈ R+ has a continuous right
derivative everywhere and hence is continuously differentiable implying

F (Y + δx)−F (Y ) =

∫ 1

0

δF (Y + sδx)

δY (x)
ds. (113)

We shall say that F belongs to Ck
weak(S), k = 1,2, . . . , if δlF (Y )/δY (x1) . . . δY (xl) exists for all

l = 1, ..., k, all x1, . . . , xk ∈ Zk and Y ∈ S, and represents a continuous mapping of k+ 1 variables
(when measures equipped with the weak topology) uniformly bounded on the sets of bounded Y .
When defined on a bounded set S, these spaces become Banach when equipped with the norm

∥F∥Ck
weak

(S) = sup
x1,··· ,xk

sup
Y ∈S

∣∣∣∣ δkF (Y )

δY (x1) · · · δY (xk)

∣∣∣∣ .
Remark 9. Again counterintuitive, the weak differentiability does not imply the weak Lip-

schitz continuity. For ϕ ∈ C(Rn), the linear functional F (µ) = (ϕ,µ) =
∫
ϕ(z)µ(dz) on M(Z) is

weakly continuously differentiable of all orders, but it is weakly Lipschitz only if ϕ is Lipschitz,
with ∥F∥weakLip = ∥ϕ∥Lip.
The following facts are basic formulas of the calculus for functionals on measures. They are easy

to deduce (the details are given in [54]).

Lemma 2. (i) One has the inclusion C1
weak(S)⊂C1(S) and

DξF (Y ) =

∫
δF (Y )

δY (x)
ξ(dx) (114)

F (Y + ξ)−F (Y ) =

∫ 1

0

(
δF (Y + sξ)

δY (.)
, ξ

)
ds (115)

for F ∈C1
weak(S) and Y ∈ S, ξ ∈ S−Y .

(ii) One has the inclusion C2
weak(S)⊂C2(S) and

F (Y + ξ)−F (Y ) = (
δF (Y )

δY (.)
, ξ)+

∫ 1

0

(1− s)

(
δ2F (Y + sξ)

δY (.)δY (.)
, ξ⊗ ξ

)
ds, (116)



Pressure and resistance game: Article Short Title
34 Mathematics of Operations Research 00(0), pp. 000–000, c⃝ 0000 INFORMS

for F ∈C2
weak(S) and Y ∈ S, ξ ∈ S−Y .

(iii) If t 7→ µt ∈ S is continuously differentiable in the weak topology, then for any F ∈C1
weak(S)

d

dt
F (µt) = (δF (µt; ·), µ̇t). (117)

These rules extend to measure-valued functions on M(Z). Namely, a mapping Φ : M+(Z) 7→
M(Z ′) with another set Z ′ has a weak variational derivative δΦ/δY (x), if for any Y ∈M+(Z),
x∈Z the limit

δΦ

δY (x)
= lim

s→0+

1

s
(Φ(Y + sδx)−Φ(Y ))

exists in the weak topology of M(Z ′) and is a finite signed measure on Z ′. Higher derivative are
defined inductively. We shall say that Φ belongs to C l

weak(M(Z);M(Z ′)), l= 1,2, . . . , if the weak
variational derivatives δkΦ(Y ;x1, . . . , xk) exist for all k= 1, ..., l, all x1, . . . , xk ∈Zk and Y ∈M(Z),
and represent continuous in the sense of the weak topology mapping M(Z)×Zk 7→M(Z ′), which
is bounded on the bounded subsets of Y .
Remark 10. Unlike real functions, the inclusion C l

weak(M(Z);M(Z)) ⊂ C l(M(Z);M(Z))
does not hold anymore. For instance, if Z is a one-point set, we have the opposite inclusion
C l(R;M(Z))⊂C l

weak(R;M(Z)).
The following chain rule is straightforward (details of the proof see e. g. [54]).

Lemma 3. (i) Let Φ ∈ C1
weak(M(Z);M(Z)) and F ∈ C1

weak(M(Z)), then the composition F ◦
Φ(Y ) = F (Φ(Y )) belongs to C1

weak(M(Z)) and

δF

δY (x)
(Φ(Y )) =

∫
Z

δF (W )

δW (y)
|W=Φ(Y )

δΦ

δY (x)
(Y,dy). (118)

(ii) Similarly, if Φ ∈ C1(M(Z);M(Z)) and F ∈ C1(M(Z)), then the composition F ◦Φ(Y ) =
F (Φ(Y )) belongs to C1(M(Z)) and

Dξ(F ◦Φ)(Y ) =DF (Φ(Y ))[DξΦ(Y )], (119)

for any ξ. This turns to (118) for ξ = δx.

The following technical result is the key ingredient in the proof of Theorem 4.

Lemma 4. Let a measurable function R(b,µ) on R×M(Z) be given. For a pair of different
points z1, z2 of Z and a measure µ ∈M(Z), let zl(µ), zs(µ) (with l standing for ’large’ and s for
’small’) denote the same pair, but ordered in such a way that R(zl, µ)≥R(zs, µ) (if the values are
equal, the choice of ordering is irrelevant). Let

LNf(δx/N) =
κ
N

∑
(i,j)

[R(xj, δx/N)−R(xi, δx/N)][f(δx/N − δxi/N + δxj/N)− f(x)] (120)

where x= (x1, · · · , xN) and the sum is over all pairs (i, j) of distinct indices ordered in such a way
that R(xj, δx/N)>R(xi, δx/N) (the order is irrelevant if the corresponding values of R coincide).
Then, for f ∈C2

weak(M(Z)),

LNf(µ) =κ
∫
Z

∫
Z

δf(µ)

δµ(z2)
[R(z2, µ)−R(z1, µ)]µ(dz1)µ(dz2)

+
κ
2N

∫ 1

0

(1− s)

∫
K

∫
K

µ(dz1)µ(dz2)ds[R(zl(µ), µ)−R(zs(µ), µ)]

×
(

δ2f

δµ(z2)δµ(z2)
− 2

δ2f

δµ(z2)δµ(z1)
+

δ2f

δµ(z1)δµ(z1)

)(
µ+

s

N
(δzl(µ) − δzs(µ))

)
(121)

with µ= δx/N .
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A pplying (116) one gets

LNf(µ) =
κ
N

∑
i,j:R(xj ,µ)>R(xi,µ)

[R(xj, µ)−R(xi, µ)]

×
[(

δf(µ)

δµ(.)
,
δxj − δxi

N

)
+

∫ 1

0

(1− s)

(
δ2f(µ+(δxj − δxi)/N)

δµ(.)δµ(.)
,
(δxj − δxi)

⊗2

N 2

)
ds

]
,

or equivalently

LNf(µ) =
κ
N 2

∑
I={i,j}

[R(xj, µ)−R(xi, µ)]

(
δf(µ)

δµ(xj)
− δf(µ)

δµ(xi)

)

+
κ
N 3

∑
I={i,j}

∫ 1

0

(1− s)ds[R(xl, µ)−R(xs, µ)]

×
(

δ2f

δµ(xi)δµ(xi)
− 2

δ2f

δµ(xi)δµ(xj)
+

δ2f

δµ(xj)δµ(xj)

)(
µ+

s

N
(δxl(µ) − δxs(µ))

)
,

where the summation is over the two-point subsets I of {1, · · · ,N}. It is seen directly that this
rewrites as (121).

6.4. On measure-valued ODEs with the Lyapunov condition Let Z be a locally com-
pact space. Here we recall the basic facts on the growth of positivity preserving ordinary differential
equations (ODEs) in M(Z) with an unbounded r.h.s. satisfying the Lyapunov condition.

Let us consider again an ODE ẋ= f(x) in M(Z) with a continuous, but generally unbounded
f . We are interested here in evolutions preserving positivity, that is, such that for any initial
x∈M+(Z) the solution x(t) belongs to M+(Z) for all t. This implies that f must be conditionally
positive, in the sense that for any x ∈M+(Z), the negative part of f(x) is absolutely continuous
with respect to f(x). In case M+(Z) = l1+ this means that for any x ∈ l1+ with xk = 0 one has
fk(x)≥ 0.

A continuous function L on Z, bounded below by a positive constant, will be referred to as a
Lyapunov function or a barrier. For any such function, let us define the subset M(Z,L) of M(Z)
of measures x such that

∥x∥L =

∫
L(z)|x|(dz) = (|x|,L)<∞, (122)

which is itself a Banach space with the norm ∥.∥L. Let us denote by B(L,R) the ball in M(Z,L)
of radius R and let M(Z,L)+ =M(Z,L) ∩M+(Z), B+(L,R) = B(L,R) ∩M+(Z). For the case
Z =N let us write l1(L) for M(Z,L). In particular, l1(1) = l1 =M(Z), where 1 denotes of course
the function that equals 1 everywhere.

Let us say that the equation ẋ = f(x) and the function f(x) are L-subcritical (respectively,
satisfy the Lyapunov condition for L) if f :M(Z,L)+ →M(Z,L) and

(L,f(x)) =

∫
L(z)f(x)(dz)≤ 0 (123)

( respectively

(L,f(x))≤ a(L,x)+ b (124)

for all x∈M(Z,L)+ and some constants a, b).
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Lemma 5. Suppose the function f is conditionally positive, satisfies the Lyapunov condition
for a Lyapunov function L on Z and is Lipschitz either weakly or in the norm of M(Z,L) or
M(Z) on any bounded subset of M(Z,L)+. Then, for any x ∈M(Z,L)+, the Cauchy problem of
equation ẋ= f(x) with initial condition x at time s≥ 0 has a unique global (that is defined for all
times) solution X(t, x) in M(Z,L)+ with derivative understood with respect to the corresponding
topology. Moreover,

X(t, x)∈B+(L,e
at(∥x0∥L + bt)). (125)

In particular, any ball B+(L,R) is invariant under an L-subcritical evolution.

B y local Lipschitz continuity and conditional positivity, equation ẋ= f(x) is locally well-posed
and preserves positivity. Moreover, by the Lyapunov condition

(L,x(t))≤ (L,x)+ a

∫ t

0

(L,x(s))ds+ bt,

so that by Gronwall’s lemma (and the preservation of positivity)

0≤ (L,x(t))≤ eat[(L,x)+ bt]

implying that the solution can be extended to all times with required bounds.
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[70] López-Pintado D (2006). Contagion and coordination in random networks. Internat. J. Game Theory
34(3): 371 - 381.

[71] Lye K-W, Wing JM (2005) Game strategies in network security. Int J Inf Secur 4: 71 - 86.

[72] Malafeyev OA, Redinskikh ND, Alferov GV (2014) Electric circuits analogies in economics modeling:
Corruption networks. Proceedings of ICEE-2014 (2nd International Conference on Emission Electron-
ics), DOI: 10.1109/Emission.2014.6893965, Publisher: IEEE

[73] De Mesquita BB (2010) The Predictioneer’s Game. Random House.
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