517 research outputs found

    On Ergodic Secrecy Capacity for Gaussian MISO Wiretap Channels

    Full text link
    A Gaussian multiple-input single-output (MISO) wiretap channel model is considered, where there exists a transmitter equipped with multiple antennas, a legitimate receiver and an eavesdropper each equipped with a single antenna. We study the problem of finding the optimal input covariance that achieves ergodic secrecy capacity subject to a power constraint where only statistical information about the eavesdropper channel is available at the transmitter. This is a non-convex optimization problem that is in general difficult to solve. Existing results address the case in which the eavesdropper or/and legitimate channels have independent and identically distributed Gaussian entries with zero-mean and unit-variance, i.e., the channels have trivial covariances. This paper addresses the general case where eavesdropper and legitimate channels have nontrivial covariances. A set of equations describing the optimal input covariance matrix are proposed along with an algorithm to obtain the solution. Based on this framework, we show that when full information on the legitimate channel is available to the transmitter, the optimal input covariance has always rank one. We also show that when only statistical information on the legitimate channel is available to the transmitter, the legitimate channel has some general non-trivial covariance, and the eavesdropper channel has trivial covariance, the optimal input covariance has the same eigenvectors as the legitimate channel covariance. Numerical results are presented to illustrate the algorithm.Comment: 27 pages, 10 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper

    Full text link
    This paper investigates reliable and covert transmission strategies in a multiple-input multiple-output (MIMO) wiretap channel with a transmitter, receiver and an adversarial wiretapper, each equipped with multiple antennas. In a departure from existing work, the wiretapper possesses a novel capability to act either as a passive eavesdropper or as an active jammer, under a half-duplex constraint. The transmitter therefore faces a choice between allocating all of its power for data, or broadcasting artificial interference along with the information signal in an attempt to jam the eavesdropper (assuming its instantaneous channel state is unknown). To examine the resulting trade-offs for the legitimate transmitter and the adversary, we model their interactions as a two-person zero-sum game with the ergodic MIMO secrecy rate as the payoff function. We first examine conditions for the existence of pure-strategy Nash equilibria (NE) and the structure of mixed-strategy NE for the strategic form of the game.We then derive equilibrium strategies for the extensive form of the game where players move sequentially under scenarios of perfect and imperfect information. Finally, numerical simulations are presented to examine the equilibrium outcomes of the various scenarios considered.Comment: 27 pages, 8 figures. To appear, IEEE Transactions on Signal Processin

    Mapping-Varied Spatial Modulation for Physical Layer Security: Transmission Strategy and Secrecy Rate

    Get PDF
    In this paper, a novel transmission strategy, referred to as mapping-varied spatial modulation, is proposed for physical layer security, where the transmitter varies mapping patterns for the radiated information and the antenna information of spatial modulation, based on the instantaneous pattern of legitimate channel quality information that is unknown to eavesdroppers. Therefore, eavesdroppers cannot successfully decode the confidential information and the transmission over the legitimate link is secured from the wire-tap of eavesdroppers, without relying on higher-layer encryption. An important virtue of the proposed transmission strategy is that the transmitter does not need to know eavesdroppers' channels states at all. To further demonstrate the advantage of this scheme, its secrecy rate was formulated for the purpose of facilitating the performance evaluation. Moreover, illustrative numerical results pertaining to the metrics of ergodic secrecy rate and secrecy outage probability not only substantiate the validity of the proposed transmission strategy, but also provide useful references for the system design with the mapping-varied spatial modulation, from the view of physical layer security
    • …
    corecore