290,347 research outputs found

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%−−10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page

    On the feasibility of collaborative green data center ecosystems

    Get PDF
    The increasing awareness of the impact of the IT sector on the environment, together with economic factors, have fueled many research efforts to reduce the energy expenditure of data centers. Recent work proposes to achieve additional energy savings by exploiting, in concert with customers, service workloads and to reduce data centers’ carbon footprints by adopting demand-response mechanisms between data centers and their energy providers. In this paper, we debate about the incentives that customers and data centers can have to adopt such measures and propose a new service type and pricing scheme that is economically attractive and technically realizable. Simulation results based on real measurements confirm that our scheme can achieve additional energy savings while preserving service performance and the interests of data centers and customers.Peer ReviewedPostprint (author's final draft

    A truthful incentive mechanism for emergency demand response in colocation data centers

    Get PDF
    Data centers are key participants in demand response programs, including emergency demand response (EDR), where the grid coordinates large electricity consumers for demand reduction in emergency situations to prevent major economic losses. While existing literature concentrates on owner-operated data centers, this work studies EDR in multi-tenant colocation data centers where servers are owned and managed by individual tenants. EDR in colocation data centers is significantly more challenging, due to lack of incentives to reduce energy consumption by tenants who control their servers and are typically on fixed power contracts with the colocation operator. Consequently, to achieve demand reduction goals set by the EDR program, the operator has to rely on the highly expensive and/or environmentally-unfriendly on-site energy backup/generation. To reduce cost and environmental impact, an efficient incentive mechanism is therefore in need, motivating tenants’ voluntary energy reduction in case of EDR. This work proposes a novel incentive mechanism, Truth-DR, which leverages a reverse auction to provide monetary remuneration to tenants according to their agreed energy reduction. Truth-DR is computationally efficient, truthful, and achieves 2-approximation in colocation-wide social cost. Trace-driven simulations verify the efficacy of the proposed auction mechanism.published_or_final_versio

    Energy Efficient Service Delivery in Clouds in Compliance with the Kyoto Protocol

    Full text link
    Cloud computing is revolutionizing the ICT landscape by providing scalable and efficient computing resources on demand. The ICT industry - especially data centers, are responsible for considerable amounts of CO2 emissions and will very soon be faced with legislative restrictions, such as the Kyoto protocol, defining caps at different organizational levels (country, industry branch etc.) A lot has been done around energy efficient data centers, yet there is very little work done in defining flexible models considering CO2. In this paper we present a first attempt of modeling data centers in compliance with the Kyoto protocol. We discuss a novel approach for trading credits for emission reductions across data centers to comply with their constraints. CO2 caps can be integrated with Service Level Agreements and juxtaposed to other computing commodities (e.g. computational power, storage), setting a foundation for implementing next-generation schedulers and pricing models that support Kyoto-compliant CO2 trading schemes

    A robust modeling framework for energy analysis of data centers

    Full text link
    Global digitalization has given birth to the explosion of digital services in approximately every sector of contemporary life. Applications of artificial intelligence, blockchain technologies, and internet of things are promising to accelerate digitalization further. As a consequence, the number of data centers, which provide the services of data processing, storage, and communication services, is also increasing rapidly. Because data centers are energy-intensive with significant and growing electricity demand, an energy model of data centers with temporal, spatial, and predictive analysis capability is critical for guiding industry and governmental authorities for making technology investment decisions. However, current models fail to provide consistent and high dimensional energy analysis for data centers due to severe data gaps. This can be further attributed to the lack of the modeling capabilities for energy analysis of data center components including IT equipment and data center cooling and power provisioning infrastructure in current energy models. In this research, a technology-based modeling framework, in hybrid with a data-driven approach, is proposed to address the knowledge gaps in current data center energy models. The research aims to provide policy makers and data center energy analysts with comprehensive understanding of data center energy use and efficiency opportunities and a better understanding of macro-level data center energy demand and energy saving potentials, in addition to the technological barriers for adopting energy efficiency measures
    • …
    corecore