3,385 research outputs found

    Civil aircraft advanced avionics architectures - an insight into saras avionics, present and future perspective

    Get PDF
    Traditionally, the avionics architectures being implemented are of federated nature, which means that each avionics function has its own independent, dedicated fault-tolerant computing resources. Federated architecture has great advantage of inherent fault containment and at the same time envelops a potential risk of massive use of resources resulting in increase in weight, looming, cost and maintenance as well. With the drastic advancement in the computer and software technologies, the aviation industry is gradually moving towards the use of Integrated Modular Avionics (IMA) for civil transport aircraft, potentially leading to multiple avionics functions housed in each hardware platform. Integrated Modular Avionics is the most important concept of avionics architecture for next generation aircrafts. SARAS avionics suite is purely federated with almost glass cockpit architecture complying to FAR25. The Avionics activities from the inception to execution are governed by the regulations and procedures under the review of Directorate General of Civil Aviation (DGCA). Every phase of avionics activity has got its own technically involvement to make the system perfect. In addition the flight data handling, monitoring and analysis is again a thrust area in the civil aviation industry leading to safety and reliability of the machine and the personnel involved. NAL has been in this area for more than two decades and continues to excel in these technologies

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    Flight elements: Advanced avionics systems architectures

    Get PDF
    Space transportation objectives are associated with transporting material from Earth to orbit, interplanetary travel, and planetary landing. The objectives considered herein are associated with Earth to orbit transportation. Many good avionics architectural features will support all phases of space transportation, but interplanetary transportation poses significantly different problems such as long mission time with high reliability, unattended operation, and many different opportunities such as long nonoperational flight segments that can be used for equipment fault diagnosis and repair. Fault tolerance can be used to permit continued operation with faulty units, not only during launch but also, and perhaps with more impact, during prelaunch activities. Avionics systems are entering a phase of development where the traditional approaches to satisfactory systems based on engineering judgement and thorough testing will alone no longer be adequate to assure that the required system performance can be obtained. A deeper understanding will be required to make the effects of obscure design decisions clear at a level where their impact can be properly judged

    Preliminary Candidate Advanced Avionics System (PCAAS)

    Get PDF
    Specifications which define the system functional requirements, the subsystem and interface needs, and other requirements such as maintainability, modularity, and reliability are summarized. A design definition of all required avionics functions and a system risk analysis are presented

    Avionics and controls research and technology

    Get PDF
    The workshop provided a forum for industry and universities to discuss the state-of-the-art, identify the technology needs and opportunities, and describe the role of NASA in avionics and controls research

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    GARDSim - A GPS Receiver Simulation Environment for Integrated Navigation System Development and Analysis

    Get PDF
    Airservices Australia has recently proposed the use of a Ground-based Regional Augmentation System (GRAS) to improve the safety of using the NAVSTAR Global Positioning System (GPS) in aviation. The GRAS Airborne Receiver Development project (GARD) is being conducted by QUT in conjunction with Airservices Australia and GPSat Systems. The aim of the project is to further enhance the safety and reliability of GPS and GRAS by incorporating smart sensor technology including advanced GPS signal processing and Micro-Electro-Mechanical-Sensor (MEMS) based inertial components. GARDSim is a GPS and GRAS receiver simulation environment which has been developed for algorithm development and analysis in the GARD project. GARDSim is capable of simulating any flight path using a given aeroplane flight model, simulating various GPS, GRAS and inertial system measurements and performing high integrity navigation solutions for the flight. This paper discusses the architecture and capabilities of GARDSim. Simulation results will be presented to demonstrate the usefulness of GARDSim as a simulation environment for algorithm development and evaluation

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    System data communication structures for active-control transport aircraft, volume 1

    Get PDF
    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration
    corecore