587 research outputs found

    Technical Report: A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

    Get PDF
    To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time- and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and by how much they differ.Comment: Technical Report for the CCGrid 2018 submission "A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

    DeepScaler: Holistic Autoscaling for Microservices Based on Spatiotemporal GNN with Adaptive Graph Learning

    Full text link
    Autoscaling functions provide the foundation for achieving elasticity in the modern cloud computing paradigm. It enables dynamic provisioning or de-provisioning resources for cloud software services and applications without human intervention to adapt to workload fluctuations. However, autoscaling microservice is challenging due to various factors. In particular, complex, time-varying service dependencies are difficult to quantify accurately and can lead to cascading effects when allocating resources. This paper presents DeepScaler, a deep learning-based holistic autoscaling approach for microservices that focus on coping with service dependencies to optimize service-level agreements (SLA) assurance and cost efficiency. DeepScaler employs (i) an expectation-maximization-based learning method to adaptively generate affinity matrices revealing service dependencies and (ii) an attention-based graph convolutional network to extract spatio-temporal features of microservices by aggregating neighbors' information of graph-structural data. Thus DeepScaler can capture more potential service dependencies and accurately estimate the resource requirements of all services under dynamic workloads. It allows DeepScaler to reconfigure the resources of the interacting services simultaneously in one resource provisioning operation, avoiding the cascading effect caused by service dependencies. Experimental results demonstrate that our method implements a more effective autoscaling mechanism for microservice that not only allocates resources accurately but also adapts to dependencies changes, significantly reducing SLA violations by an average of 41% at lower costs.Comment: To be published in the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    A study on performance measures for auto-scaling CPU-intensive containerized applications

    Get PDF
    Autoscaling of containers can leverage performance measures from the different layers of the computational stack. This paper investigate the problem of selecting the most appropriate performance measure to activate auto-scaling actions aiming at guaranteeing QoS constraints. First, the correlation between absolute and relative usage measures and how a resource allocation decision can be influenced by them is analyzed in different workload scenarios. Absolute and relative measures could assume quite different values. The former account for the actual utilization of resources in the host system, while the latter account for the share that each container has of the resources used. Then, the performance of a variant of Kubernetes’ auto-scaling algorithm, that transparently uses the absolute usage measures to scale-in/out containers, is evaluated through a wide set of experiments. Finally, a detailed analysis of the state-of-the-art is presented
    • …
    corecore