135,750 research outputs found

    Data Cube Approximation and Mining using Probabilistic Modeling

    Get PDF
    On-line Analytical Processing (OLAP) techniques commonly used in data warehouses allow the exploration of data cubes according to different analysis axes (dimensions) and under different abstraction levels in a dimension hierarchy. However, such techniques are not aimed at mining multidimensional data. Since data cubes are nothing but multi-way tables, we propose to analyze the potential of two probabilistic modeling techniques, namely non-negative multi-way array factorization and log-linear modeling, with the ultimate objective of compressing and mining aggregate and multidimensional values. With the first technique, we compute the set of components that best fit the initial data set and whose superposition coincides with the original data; with the second technique we identify a parsimonious model (i.e., one with a reduced set of parameters), highlight strong associations among dimensions and discover possible outliers in data cells. A real life example will be used to (i) discuss the potential benefits of the modeling output on cube exploration and mining, (ii) show how OLAP queries can be answered in an approximate way, and (iii) illustrate the strengths and limitations of these modeling approaches

    Freshwater ecosystem services in mining regions : modelling options for policy development support

    Get PDF
    The ecosystem services (ES) approach offers an integrated perspective of social-ecological systems, suitable for holistic assessments of mining impacts. Yet for ES models to be policy-relevant, methodological consensus in mining contexts is needed. We review articles assessing ES in mining areas focusing on freshwater components and policy support potential. Twenty-six articles were analysed concerning (i) methodological complexity (data types, number of parameters, processes and ecosystem-human integration level) and (ii) potential applicability for policy development (communication of uncertainties, scenario simulation, stakeholder participation and management recommendations). Articles illustrate mining impacts on ES through valuation exercises mostly. However, the lack of ground-and surface-water measurements, as well as insufficient representation of the connectivity among soil, water and humans, leave room for improvements. Inclusion of mining-specific environmental stressors models, increasing resolution of topographies, determination of baseline ES patterns and inclusion of multi-stakeholder perspectives are advantageous for policy support. We argue that achieving more holistic assessments exhorts practitioners to aim for high social-ecological connectivity using mechanistic models where possible and using inductive methods only where necessary. Due to data constraints, cause-effect networks might be the most feasible and best solution. Thus, a policy-oriented framework is proposed, in which data science is directed to environmental modelling for analysis of mining impacts on water ES
    corecore