28,513 research outputs found

    Spectral Optimization Problems

    Full text link
    In this survey paper we present a class of shape optimization problems where the cost function involves the solution of a PDE of elliptic type in the unknown domain. In particular, we consider cost functions which depend on the spectrum of an elliptic operator and we focus on the existence of an optimal domain. The known results are presented as well as a list of still open problems. Related fields as optimal partition problems, evolution flows, Cheeger-type problems, are also considered.Comment: 42 pages with 8 figure

    A Multiphase Shape Optimization Problem for Eigenvalues: Qualitative Study and Numerical Results

    Get PDF
    We consider the multiphase shape optimization problem min⁥{∑i=1hλ1(Ωi)+α∣Ωi∣: Ωi open, Ωi⊂D, Ωi∩Ωj=∅},\min\Big\{\sum_{i=1}^h\lambda_1(\Omega_i)+\alpha|\Omega_i|:\ \Omega_i\ \hbox{open},\ \Omega_i\subset D,\ \Omega_i\cap\Omega_j=\emptyset\Big\}, where α>0\alpha>0 is a given constant and D⊂R2 D\subset\Bbb{R}^2 is a bounded open set with Lipschitz boundary. We give some new results concerning the qualitative properties of the optimal sets and the regularity of the corresponding eigenfunctions. We also provide numerical results for the optimal partitions

    Cube-Cut: Vertebral Body Segmentation in MRI-Data through Cubic-Shaped Divergences

    Full text link
    In this article, we present a graph-based method using a cubic template for volumetric segmentation of vertebrae in magnetic resonance imaging (MRI) acquisitions. The user can define the degree of deviation from a regular cube via a smoothness value Delta. The Cube-Cut algorithm generates a directed graph with two terminal nodes (s-t-network), where the nodes of the graph correspond to a cubic-shaped subset of the image's voxels. The weightings of the graph's terminal edges, which connect every node with a virtual source s or a virtual sink t, represent the affinity of a voxel to the vertebra (source) and to the background (sink). Furthermore, a set of infinite weighted and non-terminal edges implements the smoothness term. After graph construction, a minimal s-t-cut is calculated within polynomial computation time, which splits the nodes into two disjoint units. Subsequently, the segmentation result is determined out of the source-set. A quantitative evaluation of a C++ implementation of the algorithm resulted in an average Dice Similarity Coefficient (DSC) of 81.33% and a running time of less than a minute.Comment: 23 figures, 2 tables, 43 references, PLoS ONE 9(4): e9338

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale
    • 

    corecore