14,799 research outputs found

    Minimum-Information LQG Control - Part I: Memoryless Controllers

    Full text link
    With the increased demand for power efficiency in feedback-control systems, communication is becoming a limiting factor, raising the need to trade off the external cost that they incur with the capacity of the controller's communication channels. With a proper design of the channels, this translates into a sequential rate-distortion problem, where we minimize the rate of information required for the controller's operation under a constraint on its external cost. Memoryless controllers are of particular interest both for the simplicity and frugality of their implementation and as a basis for studying more complex controllers. In this paper we present the optimality principle for memoryless linear controllers that utilize minimal information rates to achieve a guaranteed external-cost level. We also study the interesting and useful phenomenology of the optimal controller, such as the principled reduction of its order

    Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper

    Full text link
    This paper investigates reliable and covert transmission strategies in a multiple-input multiple-output (MIMO) wiretap channel with a transmitter, receiver and an adversarial wiretapper, each equipped with multiple antennas. In a departure from existing work, the wiretapper possesses a novel capability to act either as a passive eavesdropper or as an active jammer, under a half-duplex constraint. The transmitter therefore faces a choice between allocating all of its power for data, or broadcasting artificial interference along with the information signal in an attempt to jam the eavesdropper (assuming its instantaneous channel state is unknown). To examine the resulting trade-offs for the legitimate transmitter and the adversary, we model their interactions as a two-person zero-sum game with the ergodic MIMO secrecy rate as the payoff function. We first examine conditions for the existence of pure-strategy Nash equilibria (NE) and the structure of mixed-strategy NE for the strategic form of the game.We then derive equilibrium strategies for the extensive form of the game where players move sequentially under scenarios of perfect and imperfect information. Finally, numerical simulations are presented to examine the equilibrium outcomes of the various scenarios considered.Comment: 27 pages, 8 figures. To appear, IEEE Transactions on Signal Processin

    Communication under Strong Asynchronism

    Full text link
    We consider asynchronous communication over point-to-point discrete memoryless channels. The transmitter starts sending one block codeword at an instant that is uniformly distributed within a certain time period, which represents the level of asynchronism. The receiver, by means of a sequential decoder, must isolate the message without knowing when the codeword transmission starts but being cognizant of the asynchronism level A. We are interested in how quickly can the receiver isolate the sent message, particularly in the regime where A is exponentially larger than the codeword length N, which we refer to as `strong asynchronism.' This model of sparse communication may represent the situation of a sensor that remains idle most of the time and, only occasionally, transmits information to a remote base station which needs to quickly take action. The first result shows that vanishing error probability can be guaranteed as N tends to infinity while A grows as Exp(N*k) if and only if k does not exceed the `synchronization threshold,' a constant that admits a simple closed form expression, and is at least as large as the capacity of the synchronized channel. The second result is the characterization of a set of achievable strictly positive rates in the regime where A is exponential in N, and where the rate is defined with respect to the expected delay between the time information starts being emitted until the time the receiver makes a decision. As an application of the first result we consider antipodal signaling over a Gaussian channel and derive a simple necessary condition between A, N, and SNR for achieving reliable communication.Comment: 26 page

    Decentralized sequential change detection using physical layer fusion

    Full text link
    The problem of decentralized sequential detection with conditionally independent observations is studied. The sensors form a star topology with a central node called fusion center as the hub. The sensors make noisy observations of a parameter that changes from an initial state to a final state at a random time where the random change time has a geometric distribution. The sensors amplify and forward the observations over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. The optimal transmission strategy at each stage is shown to be the one that maximizes a certain Ali-Silvey distance between the distributions for the hypotheses before and after the change. Simulations demonstrate that the proposed analog technique has lower detection delays when compared with existing schemes. Simulations further demonstrate that the energy-constrained formulation enables better use of the total available energy than the power-constrained formulation in the change detection problem.Comment: 10 pages, two-column, 10 figures, revised based on feedback from reviewers, accepted for publication in IEEE Trans. on Wireless Communication
    corecore