736 research outputs found

    MR image reconstruction using deep density priors

    Full text link
    Algorithms for Magnetic Resonance (MR) image reconstruction from undersampled measurements exploit prior information to compensate for missing k-space data. Deep learning (DL) provides a powerful framework for extracting such information from existing image datasets, through learning, and then using it for reconstruction. Leveraging this, recent methods employed DL to learn mappings from undersampled to fully sampled images using paired datasets, including undersampled and corresponding fully sampled images, integrating prior knowledge implicitly. In this article, we propose an alternative approach that learns the probability distribution of fully sampled MR images using unsupervised DL, specifically Variational Autoencoders (VAE), and use this as an explicit prior term in reconstruction, completely decoupling the encoding operation from the prior. The resulting reconstruction algorithm enjoys a powerful image prior to compensate for missing k-space data without requiring paired datasets for training nor being prone to associated sensitivities, such as deviations in undersampling patterns used in training and test time or coil settings. We evaluated the proposed method with T1 weighted images from a publicly available dataset, multi-coil complex images acquired from healthy volunteers (N=8) and images with white matter lesions. The proposed algorithm, using the VAE prior, produced visually high quality reconstructions and achieved low RMSE values, outperforming most of the alternative methods on the same dataset. On multi-coil complex data, the algorithm yielded accurate magnitude and phase reconstruction results. In the experiments on images with white matter lesions, the method faithfully reconstructed the lesions. Keywords: Reconstruction, MRI, prior probability, machine learning, deep learning, unsupervised learning, density estimationComment: Published in IEEE TMI. Main text and supplementary material, 19 pages tota

    Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Get PDF
    Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the K-nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study

    Advancement in Denoising MRI Images via 3D-GAN Model with Direction Coupled Magnitude Histogram Consistency Loss

    Get PDF
    The diagnostics of medical pictures are essential for recognizing and comprehending a wide range of medical problems. This work introduces the Direction Coupled Magnitude Histogram (DCMH) as a novel structure picture descriptor to improve diagnostic accuracy. One of DCMH's unique selling points is its ability to include the edge oriented information that are oriented in any way inside a frame, enabling the expression of delicate nuances using various gradient features. The proposed method applies cartoon texture based textural loss and DCMH based structural loss to identify and analyse structural and textural information during the denoising time. A major contribution that improves the interpretability of images by emphasizing structural aspects that is inherent to the image. The proposed DCMH_3D_GANaverage results show exceptional performance, with an SSIM of 0.972995 and PSNR of 48.74, highlighting the effectiveness of the DCMH-based method in enhancing medical picture diagnosis. The capacity of Structured Loss to improve picture interpretability and lead to a more precise diagnosis is unquestionably advantageous. The newly developed DCMH-based approach, which includes texture loss and structured components, is a promising development in healthcare image processing that will enable better patient care through enhanced diagnostic abilities

    Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds

    Full text link
    Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs

    Blind Inpainting with Object-aware Discrimination for Artificial Marker Removal

    Full text link
    Medical images often contain artificial markers added by doctors, which can negatively affect the accuracy of AI-based diagnosis. To address this issue and recover the missing visual contents, inpainting techniques are highly needed. However, existing inpainting methods require manual mask input, limiting their application scenarios. In this paper, we introduce a novel blind inpainting method that automatically completes visual contents without specifying masks for target areas in an image. Our proposed model includes a mask-free reconstruction network and an object-aware discriminator. The reconstruction network consists of two branches that predict the corrupted regions with artificial markers and simultaneously recover the missing visual contents. The object-aware discriminator relies on the powerful recognition capabilities of the dense object detector to ensure that the markers of reconstructed images cannot be detected in any local regions. As a result, the reconstructed image can be close to the clean one as much as possible. Our proposed method is evaluated on different medical image datasets, covering multiple imaging modalities such as ultrasound (US), magnetic resonance imaging (MRI), and electron microscopy (EM), demonstrating that our method is effective and robust against various unknown missing region patterns

    Multiresolution image models and estimation techniques

    Get PDF
    • …
    corecore