892 research outputs found

    If the Current Clique Algorithms are Optimal, so is Valiant's Parser

    Full text link
    The CFG recognition problem is: given a context-free grammar G\mathcal{G} and a string ww of length nn, decide if ww can be obtained from G\mathcal{G}. This is the most basic parsing question and is a core computer science problem. Valiant's parser from 1975 solves the problem in O(nω)O(n^{\omega}) time, where ω<2.373\omega<2.373 is the matrix multiplication exponent. Dozens of parsing algorithms have been proposed over the years, yet Valiant's upper bound remains unbeaten. The best combinatorial algorithms have mildly subcubic O(n3/log3n)O(n^3/\log^3{n}) complexity. Lee (JACM'01) provided evidence that fast matrix multiplication is needed for CFG parsing, and that very efficient and practical algorithms might be hard or even impossible to obtain. Lee showed that any algorithm for a more general parsing problem with running time O(Gn3ε)O(|\mathcal{G}|\cdot n^{3-\varepsilon}) can be converted into a surprising subcubic algorithm for Boolean Matrix Multiplication. Unfortunately, Lee's hardness result required that the grammar size be G=Ω(n6)|\mathcal{G}|=\Omega(n^6). Nothing was known for the more relevant case of constant size grammars. In this work, we prove that any improvement on Valiant's algorithm, even for constant size grammars, either in terms of runtime or by avoiding the inefficiencies of fast matrix multiplication, would imply a breakthrough algorithm for the kk-Clique problem: given a graph on nn nodes, decide if there are kk that form a clique. Besides classifying the complexity of a fundamental problem, our reduction has led us to similar lower bounds for more modern and well-studied cubic time problems for which faster algorithms are highly desirable in practice: RNA Folding, a central problem in computational biology, and Dyck Language Edit Distance, answering an open question of Saha (FOCS'14)

    Improved bounds for testing Dyck languages

    Full text link
    In this paper we consider the problem of deciding membership in Dyck languages, a fundamental family of context-free languages, comprised of well-balanced strings of parentheses. In this problem we are given a string of length nn in the alphabet of parentheses of mm types and must decide if it is well-balanced. We consider this problem in the property testing setting, where one would like to make the decision while querying as few characters of the input as possible. Property testing of strings for Dyck language membership for m=1m=1, with a number of queries independent of the input size nn, was provided in [Alon, Krivelevich, Newman and Szegedy, SICOMP 2001]. Property testing of strings for Dyck language membership for m2m \ge 2 was first investigated in [Parnas, Ron and Rubinfeld, RSA 2003]. They showed an upper bound and a lower bound for distinguishing strings belonging to the language from strings that are far (in terms of the Hamming distance) from the language, which are respectively (up to polylogarithmic factors) the 2/32/3 power and the 1/111/11 power of the input size nn. Here we improve the power of nn in both bounds. For the upper bound, we introduce a recursion technique, that together with a refinement of the methods in the original work provides a test for any power of nn larger than 2/52/5. For the lower bound, we introduce a new problem called Truestring Equivalence, which is easily reducible to the 22-type Dyck language property testing problem. For this new problem, we show a lower bound of nn to the power of 1/51/5

    Edit Distance for Pushdown Automata

    Get PDF
    The edit distance between two words w1,w2w_1, w_2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1w_1 to w2w_2. The edit distance generalizes to languages L1,L2\mathcal{L}_1, \mathcal{L}_2, where the edit distance from L1\mathcal{L}_1 to L2\mathcal{L}_2 is the minimal number kk such that for every word from L1\mathcal{L}_1 there exists a word in L2\mathcal{L}_2 with edit distance at most kk. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1)~deciding whether, for a given threshold kk, the edit distance from a pushdown automaton to a finite automaton is at most kk, and (2)~deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.Comment: An extended version of a paper accepted to ICALP 2015 with the same title. The paper has been accepted to the LMCS journa

    Approximating Language Edit Distance Beyond Fast Matrix Multiplication: Ultralinear Grammars Are Where Parsing Becomes Hard!

    Get PDF
    In 1975, a breakthrough result of L. Valiant showed that parsing context free grammars can be reduced to Boolean matrix multiplication, resulting in a running time of O(n^omega) for parsing where omega <= 2.373 is the exponent of fast matrix multiplication, and n is the string length. Recently, Abboud, Backurs and V. Williams (FOCS 2015) demonstrated that this is likely optimal; moreover, a combinatorial o(n^3) algorithm is unlikely to exist for the general parsing problem. The language edit distance problem is a significant generalization of the parsing problem, which computes the minimum edit distance of a given string (using insertions, deletions, and substitutions) to any valid string in the language, and has received significant attention both in theory and practice since the seminal work of Aho and Peterson in 1972. Clearly, the lower bound for parsing rules out any algorithm running in o(n^omega) time that can return a nontrivial multiplicative approximation of the language edit distance problem. Furthermore, combinatorial algorithms with cubic running time or algorithms that use fast matrix multiplication are often not desirable in practice. To break this n^omega hardness barrier, in this paper we study additive approximation algorithms for language edit distance. We provide two explicit combinatorial algorithms to obtain a string with minimum edit distance with performance dependencies on either the number of non-linear productions, k^*, or the number of nested non-linear production, k, used in the optimal derivation. Explicitly, we give an additive O(k^*gamma) approximation in time O(|G|(n^2 + (n/gamma)^3)) and an additive O(k gamma) approximation in time O(|G|(n^2 + (n^3/gamma^2))), where |G| is the grammar size and n is the string length. In particular, we obtain tight approximations for an important subclass of context free grammars known as ultralinear grammars, for which k and k^* are naturally bounded. Interestingly, we show that the same conditional lower bound for parsing context free grammars holds for the class of ultralinear grammars as well, clearly marking the boundary where parsing becomes hard

    IST Austria Technical Report

    Get PDF
    The edit distance between two words w1, w2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance is the minimal number k such that for every word from L1 there exists a word in L2 with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k

    A Framework of Quantum Strong Exponential-Time Hypotheses

    Get PDF
    corecore