4,377 research outputs found

    Polynomial tuning of multiparametric combinatorial samplers

    Full text link
    Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various tree-like structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional non-trivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and P\'olya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.Comment: Extended abstract, accepted to ANALCO2018. 20 pages, 6 figures, colours. Implementation and examples are available at [1] https://github.com/maciej-bendkowski/boltzmann-brain [2] https://github.com/maciej-bendkowski/multiparametric-combinatorial-sampler

    Backpropagation training in adaptive quantum networks

    Full text link
    We introduce a robust, error-tolerant adaptive training algorithm for generalized learning paradigms in high-dimensional superposed quantum networks, or \emph{adaptive quantum networks}. The formalized procedure applies standard backpropagation training across a coherent ensemble of discrete topological configurations of individual neural networks, each of which is formally merged into appropriate linear superposition within a predefined, decoherence-free subspace. Quantum parallelism facilitates simultaneous training and revision of the system within this coherent state space, resulting in accelerated convergence to a stable network attractor under consequent iteration of the implemented backpropagation algorithm. Parallel evolution of linear superposed networks incorporating backpropagation training provides quantitative, numerical indications for optimization of both single-neuron activation functions and optimal reconfiguration of whole-network quantum structure.Comment: Talk presented at "Quantum Structures - 2008", Gdansk, Polan

    Comparison of integral structures on spaces of modular forms of weight two, and computation of spaces of forms mod 2 of weight one, with appendices by Jean-Francois Mestre and Gabor Wiese

    Full text link
    Two integral structures on the Q-vector space of modular forms of weight two on X_0(N) are compared at primes p exactly dividing N. When p=2 and N is divisible by a prime that is 3 mod 4, this comparison leads to an algorithm for computing the space of weight one forms mod 2 on X_0(N/2). For p arbitrary and N>4 prime to p, a way to compute the Hecke algebra of mod p modular forms of weight one on Gamma_1(N) is presented, using forms of weight p, and, for p=2, parabolic group cohomology with mod 2 coefficients. Appendix A is a letter from Mestre to Serre, of October 1987, where he reports on computations of weight one forms mod 2 of prime level. Appendix B reports on an implementation for p=2 in Magma, using Stein's modular symbols package, with which Mestre's computations are redone and slightly extended.Comment: 39 pages, Late

    Quantum-number projection in the path-integral renormalization group method

    Full text link
    We present a quantum-number projection technique which enables us to exactly treat spin, momentum and other symmetries embedded in the Hubbard model. By combining this projection technique, we extend the path-integral renormalization group method to improve the efficiency of numerical computations. By taking numerical calculations for the standard Hubbard model and the Hubbard model with next nearest neighbor transfer, we show that the present extended method can extremely enhance numerical accuracy and that it can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Recent progress in exact geometric computation

    Get PDF
    AbstractComputational geometry has produced an impressive wealth of efficient algorithms. The robust implementation of these algorithms remains a major issue. Among the many proposed approaches for solving numerical non-robustness, Exact Geometric Computation (EGC) has emerged as one of the most successful. This survey describes recent progress in EGC research in three key areas: constructive zero bounds, approximate expression evaluation and numerical filters
    corecore