2 research outputs found

    Cyclist-aware intelligent transportation system

    Get PDF
    Abstract. Rapidly developing cities make cycling popular way of traveling around and with enhanced smart traffic light infrastructure cycling can be safer and smoother. Smartphones with an internet connectivity and advanced positioning sensors can be used to build a cost-effective infrastructure to enable cyclist-aware traffic lights system. However, such systems depends on proper time of arrival estimation which can be affected by the GPS errors which works poorly in area with tall buildings and driver behaviour. In this paper we discuss how presence of feedback from smart traffic system influence the driver awareness of the cyclist and affects the negative impact of time of arrival estimation errors. This paper gives an analysis of the existing approaches to build smart cyclist-aware traffic systems and different sources of errors that affects their performance. With designed computer appliance we evaluated the effectiveness of cyclist-aware system with and without a presence of additional haptic and audio feedback. The results show that the presence of feedback positively affects the driver awareness of cyclist and allow them to react earlier. Experiment shows that just introduction of feedback can increase the accuracy of time of arrival estimation up to 34% without any other modification to the system.Pyöräilijät tiedostava älykäs liikennejärjestelmä. Tiivistelmä. Pyöräily on suosittu tapa liikkua nopeasti kasvavissa kaupungeissa. Parannetuilla älyliikennevaloilla pyöräilystä voisi tulla turvallisempaa ja sujuvampaa. Huokean infrastruktuurin rakentamisessa pyöräilijät tiedostavaan liikennevalojärjestelmään voidaan hyödyntää älypuhelinten verkkoyhteyttä sekä pitkälle kehitettynyttä paikannusmahdollisuutta. Paikannuksen haasteena kuitenkin ovat epätarkkuus korkeiden rakennusten katveessa sekä pyöräilijöiden ja autoilijoiden käyttäytyminen. Kyseisen kaltainen järjestelmä vaatii toimivan kulunaika-arvioinnin, mikä on haastavaa GPS-paikannuksen epätarkkuuden vuoksi. Tässä julkaisussa keskustelemme siitä, kuinka älykkäästä liikennejärjestelmästä saatu palaute vaikuttaa autoilijoiden tiedostavuuteen ja sitä kautta saapumisaika-arvioiden epätarkkuuteen. Analysoimme olemassa olevia älykkäitä pyöräiljät tiedostavia liikennejärjestelmiä ja niihin vaikuttavia epätarkkuus- sekä virhelähteitä. Käytämme kehittämäämme tietokone ohjelmaa arvioimaan pyöräilijät tiedostavan järjestelmän tehokkuutta käyttäen koemuuttujina haptista ja auditiivista palautetta. Tulokset paljastavat, että saatu palaute vaikuttaa positiivisesti parantaen autoilijoiden reaktioaikaa sekä sitä kuinka he tiedostavat pyöräiljät. Kokeet osoittavat, että pelkästään esittelyn ja palautteen olemassaolo lisäävät saapumisaika-arvioiden tarkkuutta jopa 34%

    HandSight: A Touch-Based Wearable System to Increase Information Accessibility for People with Visual Impairments

    Get PDF
    Many activities of daily living such as getting dressed, preparing food, wayfinding, or shopping rely heavily on visual information, and the inability to access that information can negatively impact the quality of life for people with vision impairments. While numerous researchers have explored solutions for assisting with visual tasks that can be performed at a distance, such as identifying landmarks for navigation or recognizing people and objects, few have attempted to provide access to nearby visual information through touch. Touch is a highly attuned means of acquiring tactile and spatial information, especially for people with vision impairments. By supporting touch-based access to information, we may help users to better understand how a surface appears (e.g., document layout, clothing patterns), thereby improving the quality of life. To address this gap in research, this dissertation explores methods to augment a visually impaired user’s sense of touch with interactive, real-time computer vision to access information about the physical world. These explorations span three application areas: reading and exploring printed documents, controlling mobile devices, and identifying colors and visual textures. At the core of each application is a system called HandSight that uses wearable cameras and other sensors to detect touch events and identify surface content beneath the user’s finger. To create HandSight, we designed and implemented the physical hardware, developed signal processing and computer vision algorithms, and designed real-time feedback that enables users to interpret visual or digital content. We involve visually impaired users throughout the design and development process, conducting several user studies to assess usability and robustness and to improve our prototype designs. The contributions of this dissertation include: (i) developing and iteratively refining HandSight, a novel wearable system to assist visually impaired users in their daily lives; (ii) evaluating HandSight across a diverse set of tasks, and identifying tradeoffs of a finger-worn approach in terms of physical design, algorithmic complexity and robustness, and usability; and (iii) identifying broader design implications for future wearable systems and for the fields of accessibility, computer vision, augmented and virtual reality, and human-computer interaction
    corecore