3 research outputs found

    Aquarius Active-Passive RFI Environment at L-Band

    Get PDF
    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments

    Performance and requirements of GEO SAR systems in the presence of Radio Frequency Interferences

    Get PDF
    Geosynchronous Synthetic Aperture Radar (GEO SAR) is a possible next generation SAR system, which has the excellent performance of less than one-day revisit and hundreds of kilometres coverage. However, Radio Frequency Interference (RFI) is a serious problem, because the specified primary allocation frequencies are shared by the increasing number of microwave devices. More seriously, as the high orbit of GEO SAR makes the system have a very large imaging swath, the RFI signals all over the illuminated continent will interfere and deteriorate the GEO SAR signal. Aimed at the RFI impact in GEO SAR case, this paper focuses on the performance evaluation and the system design requirement of GEO SAR in the presence of RFI impact. Under the RFI impact, Signal-to-Interference-plus-Noise Ratio (SINR) and the required power are theoretically deduced both for the ground RFI and the bistatic scattering RFI cases. Based on the theoretical analysis, performance evaluations of the GEO SAR design examples in the presence of RFI are conducted. The results show that higher RFI intensity and lower working frequency will make the GEO SAR have a higher power requirement for compensating the RFI impact. Moreover, specular RFI bistatic scattering will give rise to the extremely serious impact on GEO SAR, which needs incredible power requirements for compensations. At last, real RFI signal behaviours and statistical analyses based on the SMOS satellite, Beidou-2 navigation satellite and Sentinel-1 A data have been given in the appendix

    The Detection and Mitigation of RFI with the Aquarius L-Band Scatterometer

    No full text
    The Aquarius sea-surface salinity mission includes an L-band scatterometer to sense sea-surface roughness. This radar is subject to radio-frequency interference (RFI) in its passband from 1258 to 1262 MHz, a region also allocated for terrestrial radio location. Due to its received power sensitivity requirements, the expected RFI environment poses significant challenges. We present the results of a study evaluating the severity of terrestrial RFI sources on the operation of the Aquarius scatterometer, and propose a scheme to both detect and remove problematic RFI signals in the ocean backscatter measurements. The detection scheme utilizes the digital sampling of the ambient input power to detect outliers from the receiver noise floor which are statistically significant, and flags nearby radar echoes as potentially contaminated by RFI. This detection strategy, developed to meet tight budget and data downlink requirements, has been implemented and tested in hardware, and shows great promise for the detection and global mapping of L-band RFI sources
    corecore