873 research outputs found

    The Study of the Pioneer Anomaly: New Data and Objectives for New Investigation

    Full text link
    Radiometric tracking data from Pioneer 10 and 11 spacecraft has consistently indicated the presence of a small, anomalous, Doppler frequency drift, uniformly changing with a rate of ~6 x 10^{-9} Hz/s; the drift can be interpreted as a constant sunward acceleration of each particular spacecraft of a_P = (8.74 \pm 1.33) x 10^{-10} m/s^2. This signal is known as the Pioneer anomaly; the nature of this anomaly remains unexplained. We discuss the efforts to retrieve the entire data sets of the Pioneer 10/11 radiometric Doppler data. We also report on the recently recovered telemetry files that may be used to reconstruct the engineering history of both spacecraft using original project documentation and newly developed software tools. We discuss possible ways to further investigate the discovered effect using these telemetry files in conjunction with the analysis of the much extended Doppler data. We present the main objectives of new upcoming study of the Pioneer anomaly, namely i) analysis of the early data that could yield the direction of the anomaly, ii) analysis of planetary encounters, that should tell more about the onset of the anomaly, iii) analysis of the entire dataset, to better determine the anomaly's temporal behavior, iv) comparative analysis of individual anomalous accelerations for the two Pioneers, v) the detailed study of on-board systematics, and vi) development of a thermal-electric-dynamical model using on-board telemetry. The outlined strategy may allow for a higher accuracy solution for a_P and, possibly, will lead to an unambiguous determination of the origin of the Pioneer anomaly.Comment: 43 pages, 40 figures, 3 tables, minor changes before publicatio

    Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    Get PDF
    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the mission model of the future for the FDF based on NASA's current mission list and planning for the Constellation Program. As part of this discussion the following are addressed: the relevance and benefits of a multi-mission facility for NASA's navigation operations in the future; anticipated technologies affecting ground orbit determination; continued incorporation of Commercial Off-the-shelf (COTS) software into the FDF; challenges of a business model that relies entirely on user fees to fund facility upgrades; anticipated changes in flight dynamics services required; and considerations for defining architecture upgrades given a set of cost drivers

    Privacy and Geospatial Technologies

    Get PDF
    This research examines the role of geospatial and ancillary technologies in the erosion of privacy in contemporary society. The development of Remote Sensing, GIS, and GPS technologies are explored as a means of understanding both their current and predicted uses and capabilities. Examination is also made of the legal basis and current status of privacy rights in the United States. Finally, current and predicted uses and capabilities of geospatial and ancillary technologies are critically examined in light of existing privacy protections as a means of determining the ways in which these technologies are impacting privacy currently and what their effects may be in the future

    Trade-Space Analysis Tool for Designing Constellations (TAT-C)

    Get PDF
    While there is growing interest in implementing future NASA Earth Science missions as Distributed Spacecraft Missions (DSMs), there are currently no tool to help in the design of DSMs. The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. Our Trade-space Analysis Tool for Constellations (TAT-C) allows to investigate questions such as: "Which type of constellations should be chosen? How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" This paper provides a description of the TAT-C tool and its components

    Operations for parallel satellite support

    Get PDF
    In the early preparation phase for the upcoming robotic dual-satellite DLR mission several technical and operational challenges presented themselves. The mission itself shall produce advanced scientific findings for the on-orbit servicing missions. One of the satellites includes a sophisticated robotic arm with automated as well as manual operation modes. Very restrictive robotic payload requirements with respect to ground station visibilities as well as the quality of the data link became a main driver for the ground data system design. The real-time control and feedback of the robotic arm represents the particular challenge. Analysis of these requirements as well as technical and operational solutions will be presented, whereas some results are based on the successful ROKVISS mission. The usage of a dual-uplink antenna is discussed with regard to parallel operations of two satellites, here again, with already existing results provided by operations of the TanDEM-X mission. The design of the ground communication network as well as possible solutions allowing parallel robotic and housekeeping operations is shown. Results of this mission analysis and preparation are not only valuable for particular robotic, but for all dual-satellite, high data rate or realtime communication missions

    Standardizing Navigation Data: A Status Update

    Get PDF
    This paper presents the work of the Navigation Working Group of the Consultative Committee for Space Data Systems (CCSDS) on development of standards addressing the transfer of orbit, attitude and tracking data for space objects. Much progress has been made since the initial presentation of the standards in 2004, including the progression of the orbit data standard to an accepted standard, and the near completion of the attitude and tracking data standards. The orbit, attitude and tracking standards attempt to address predominant parameterizations for their respective data, and create a message format that enables communication of the data across space agencies and other entities. The messages detailed in each standard are built upon a keyword = value paradigm, where a fixed list of keywords is provided in the standard where users specify information about their data, and also use keywords to encapsulate their data. The paper presents a primer on the CCSDS standardization process to put in context the state of the message standards, and the parameterizations supported in each standard, then shows examples of these standards for orbit, attitude and tracking data. Finalization of the standards is expected by the end of calendar year 2007

    Conceptual Design and Analysis of Service Oriented Architecture (SOA) for Command and Control of Space Assets

    Get PDF
    The mission-unique model that has dominated the DoD satellite Command and Control community is costly and inefficient. It requires repeatedly “reinventing” established common C2 components for each program, unnecessarily inflating budgets and delivery schedules. The effective utilization of standards is scarce, and proprietary, non-open solutions are commonplace. IT professionals have trumpeted Service Oriented Architectures (SOAs) as the solution to large enterprise situations where multiple, functionally redundant but non-compatible information systems create large recurring development, test, maintenance, and tech refresh costs. This thesis describes the current state of Service Oriented Architectures as related to satellite operations and presents a functional analysis used to classify a set of generic C2 services. By assessing the candidate services’ suitability through a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis, several C2 functionalities are shown to be more ready than others to be presented as services in the short term. Lastly, key enablers are identified, pinpointing the necessary steps for a full and complete transition from the paradigm of costly mission-unique implementations to the common, interoperable, and reusable space C2 SOA called for by DoD senior leaders

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Issues in Modeling Military Space

    Get PDF
    Fighter Pilots students undertake an intense 120-day training program. New classes of students enter the training program at regular interval. Students endured rigorous academic, simulator, and aircraft training throughout the program. Squadron schedulers ensure the multiple classes and students are scheduled for the activities. Simulator and aircraft training are scheduled individual for each student. Academic training are taught to the class. Aircraft utilization must also be considered. Aircraft Sortie training are also constrained by daylight hours. Additionally, students are limited to a maximum of three training events in a given day. Squadron schedulers must balance these requirements to ensure students meet their training requirements and successfully graduate. The dynamic training environment requires advanced robust schedules with flexibility to accommodate changes. A Visual Interactive Modeling approach is used to generate schedules. Current schedules are being generated manually with an Excel spreadsheet. Taking advantage of Excel\u27s Visual Basic Programming language, the Excel tool is modified in several ways. Scheduling Dispatch rules are implemented to automatically generate feasible schedules. Graphical User Interfaces are used to create a user-friendly environment. Schedulers guide the schedule building process to produce a robust schedule. An attrition environment is created to simulate attrition probabilities of aircraft sortie training due to operations, maintenance, weather, and other cancellations. Analysis of dispatch rules are analyzed
    • …
    corecore