1,107 research outputs found

    Interference and X Networks with Noisy Cooperation and Feedback

    Full text link
    The Gaussian KK-user interference and MĂ—KM\times K X channels are investigated with no instantaneous channel state information (CSI) at transmitters. First, it is assumed that the CSI is fed back to all nodes after a finite delay (delayed CSIT), and furthermore, the transmitters operate in full-duplex mode, i.e., they can transmit and receive simultaneously. Achievable results are obtained on the degrees of freedom (DoF) of these channels under the above assumption. It is observed that, in contrast with no CSIT and full CSIT models, when CSIT is delayed, the achievable DoFs for both channels with full-duplex transmitter cooperation are greater than the best available achievable results on their DoF without transmitter cooperation. Our results are the first to show that the full-duplex transmitter cooperation can potentially improve the channel DoF with delayed CSIT. Then, KK-user interference and KĂ—KK\times K X channels are considered with output feedback, wherein the channel output of each receiver is causally fed back to its corresponding transmitter. Our achievable results with output feedback demonstrate strict DoF improvements over those with the full-duplex delayed CSIT when K>5K>5 in the KK-user interference channel and K>2K>2 in the KĂ—KK\times K X channel. Next, the combination of delayed CSIT and output feedback, known as Shannon feedback, is studied and strictly higher DoFs compared to the output feedback model are achieved in the KK-user interference channel when K=5 or K>6K>6, and in the KĂ—KK\times K X channel when K>2K>2. Although being strictly greater than 1 and increasing with size of the networks, the achievable DoFs in all the models studied in this paper approach limiting values not greater than 2.Comment: 53 pages, 15 figures; Submitted to IEEE Transactions on Information Theory, May 2012. To be presented in part in ISIT 2012, Cambridge, MA, US

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Secure Degrees of Freedom of MIMO X-Channels with Output Feedback and Delayed CSIT

    Get PDF
    We investigate the problem of secure transmission over a two-user multi-input multi-output (MIMO) X-channel in which channel state information is provided with one-unit delay to both transmitters (CSIT), and each receiver feeds back its channel output to a different transmitter. We refer to this model as MIMO X-channel with asymmetric output feedback and delayed CSIT. The transmitters are equipped with M-antennas each, and the receivers are equipped with N-antennas each. For this model, accounting for both messages at each receiver, we characterize the optimal sum secure degrees of freedom (SDoF) region. We show that, in presence of asymmetric output feedback and delayed CSIT, the sum SDoF region of the MIMO X-channel is same as the SDoF region of a two-user MIMO BC with 2M-antennas at the transmitter, N-antennas at each receiver and delayed CSIT. This result shows that, upon availability of asymmetric output feedback and delayed CSIT, there is no performance loss in terms of sum SDoF due to the distributed nature of the transmitters. Next, we show that this result also holds if only output feedback is conveyed to the transmitters, but in a symmetric manner, i.e., each receiver feeds back its output to both transmitters and no CSIT. We also study the case in which only asymmetric output feedback is provided to the transmitters, i.e., without CSIT, and derive a lower bound on the sum SDoF for this model. Furthermore, we specialize our results to the case in which there are no security constraints. In particular, similar to the setting with security constraints, we show that the optimal sum DoF region of the (M,M,N,N)--MIMO X-channel with asymmetric output feedback and delayed CSIT is same as the DoF region of a two-user MIMO BC with 2M-antennas at the transmitter, N-antennas at each receiver, and delayed CSIT. We illustrate our results with some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    On X-Channels with Feedback and Delayed CSI

    Full text link
    The sum degrees of freedom (DoF) of the two-user MIMO X-channel is characterized in the presence of output feedback and delayed channel state information (CSI). The number of antennas at each transmitters is assumed to be M and the number of antennas at each of the receivers is assumed to be N. It is shown that the sum DoF of the two-user MIMO X-channel is the same as the sum DoF of a two-user MIMO broadcast channel with 2M transmit antennas, and N antennas at each receiver. Hence, for this symmetric antenna configuration, there is no performance loss in the sum degrees of freedom due to the distributed nature of the transmitters. This result highlights the usefulness of feedback and delayed CSI for the MIMO X-channel. The K-user X-channel with single antenna at each transmitter and each receiver is also studied. In this network, each transmitter has a message intended for each receiver. For this network, it is shown that the sum DoF with partial output feedback alone is at least 2K/(K+1). This lower bound is strictly better than the best lower bound known for the case of delayed CSI assumption for all values of K.Comment: Submitted to IEEE ISIT 2012 on Jan 22, 201

    Retrospective Interference Alignment

    Full text link
    We explore similarities and differences in recent works on blind interference alignment under different models such as staggered block fading model and the delayed CSIT model. In particular we explore the possibility of achieving interference alignment with delayed CSIT when the transmitters are distributed. Our main contribution is an interference alignment scheme, called retrospective interference alignment in this work, that is specialized to settings with distributed transmitters. With this scheme we show that the 2 user X channel with only delayed channel state information at the transmitters can achieve 8/7 DoF, while the interference channel with 3 users is able to achieve 9/8 DoF. We also consider another setting where delayed channel output feedback is available to transmitters. In this setting the X channel and the 3 user interference channel are shown to achieve 4/3 and 6/5 DoF, respectively
    • …
    corecore