542 research outputs found

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.

    Get PDF
    © 2015 Massé et al.Background: Stroke survivors often suffer from mobility deficits. Current clinical evaluation methods, including questionnaires and motor function tests, cannot provide an objective measure of the patients mobility in daily life. Physical activity performance in daily-life can be assessed using unobtrusive monitoring, for example with a single sensor module fixed on the trunk. Existing approaches based on inertial sensors have limited performance, particularly in detecting transitions between different activities and postures, due to the inherent inter-patient variability of kinematic patterns. To overcome these limitations, one possibility is to use additional information from a barometric pressure (BP) sensor. Methods: Our study aims at integrating BP and inertial sensor data into an activity classifier in order to improve the activity (sitting, standing, walking, lying) recognition and the corresponding body elevation (during climbing stairs or when taking an elevator). Taking into account the trunk elevation changes during postural transitions (sit-to-stand, stand-to-sit), we devised an event-driven activity classifier based on fuzzy-logic. Data were acquired from 12 stroke patients with impaired mobility, using a trunk-worn inertial and BP sensor. Events, including walking and lying periods and potential postural transitions, were first extracted. These events were then fed into a double-stage hierarchical Fuzzy Inference System (H-FIS). The first stage processed the events to infer activities and the second stage improved activity recognition by applying behavioral constraints. Finally, the body elevation was estimated using a pattern-enhancing algorithm applied on BP. The patients were videotaped for reference. The performance of the algorithm was estimated using the Correct Classification Rate (CCR) and F-score. The BP-based classification approach was benchmarked against a previously-published fuzzy-logic classifier (FIS-IMU) and a conventional epoch-based classifier (EPOCH). Results: The algorithm performance for posture/activity detection, in terms of CCR was 90.4 %, with 3.3 % and 5.6 % improvements against FIS-IMU and EPOCH, respectively. The proposed classifier essentially benefits from a better recognition of standing activity (70.3 % versus 61.5 % [FIS-IMU] and 42.5 % [EPOCH]) with 98.2 % CCR for body elevation estimation. Conclusion: The monitoring and recognition of daily activities in mobility-impaired stoke patients can be significantly improved using a trunk-fixed sensor that integrates BP, inertial sensors, and an event-based activity classifier

    SELECTION OF DEFUZZIFICATION METHOD TO OBTAIN CRISP VALUES FOR REPRESENTING UNCERTAIN DATA IN A MODIFIED SWEEP ALGORITHM

    Get PDF
    A study of using fuzzy-based parameters for solving public bus routing problem with uncertain demand is presented. The fuzzy-based parameters are designed to provide data required by the route selection procedure. The uncertain data are represented as linguistic values which are fully dependent on the user’s preference. Fuzzy inference rules are assigned to relate the fuzzy parameters to the crisp values which are concerned in the route selection process. This paper focuses on the selection of the Defuzzification method to discover the most appropriate method for obtaining crisp values which represent uncertain data. We also present a step by step evaluation showing that the fuzzy-based parameters are capable to represent uncertain data replacing the use of exact data which common route selection algorithms usually use

    Data fusion using expected output membership functions

    Get PDF
    Multi-sensor systems can improve accuracy, increase detection range, and enhance reliability compared to single sensor systems. The main problems in multi-sensor systems are how to select sensors, model the sensors, and combine the data;This dissertation proposes a new data fusion method based on fuzzy set methods. The expected output membership function (EOMF) method uses the fuzzy input set and the expected fuzzy output. This method uses the intersections of the fuzzy inputs with the expected fuzzy output in order to find relationships between the given inputs and the estimate of the output. The EOMF method creates a fuzzy confidence distance measurement by assessing the fusability of the data. The fusability measure is used for finding the best position of the EOMF and the best estimate of the system output. Adaptive methods can help deal with occasional bad measurements and set the EOMF to the proper width. The EOMF method can be used for both homogeneous and heterogeneous sensors, which give redundant, cooperative or complementary information. In addition, the EOMF method is robust in the sense that it can eliminate sensor measurements that are outliers. The EOMF method compares favorably with other methods of data fusion such as the weighted average method. An example from the control of automated vehicles shows the effectiveness of the adaptive EOMF method, compared to the fixed EOMF method and the weighted average method in the presence of Gaussian and impulsive noise. This method can also be applied to nondestructive evaluation (NDE) images from heterogeneous sensors

    Ranking Indices for Fuzzy Numbers

    Get PDF

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Defuzzification of the Discretised Generalised Type-2 Fuzzy Set: Experimental Evaluation

    Get PDF
    CCI - Centre for Computational Intelligence NOTICE: this is the author’s version of a work that was accepted for publication in Information Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version can be found by following the DOIThe work reported in this paper addresses the challenge of the efficient and accurate defuzzification of discretised generalised type-2 fuzzy sets as created by the inference stage of a Mamdani Fuzzy Inferencing System. The exhaustive method of defuzzification for type-2 fuzzy sets is extremely slow, owing to its enormous computational complexity. Several approximate methods have been devised in response to this defuzzification bottleneck. In this paper we begin by surveying the main alternative strategies for defuzzifying a generalised type-2 fuzzy set: (1) Vertical Slice Centroid Type-Reduction; (2) the sampling method; (3) the elite sampling method; and (4) the α\alpha-planes method. We then evaluate the different methods experimentally for accuracy and efficiency. For accuracy the exhaustive method is used as the standard. The test results are analysed statistically by means of the Wilcoxon Nonparametric Test and the elite sampling method shown to be the most accurate. In regards to efficiency, Vertical Slice Centroid Type-Reduction is demonstrated to be the fastest technique

    Fuzzy Logic Control of Three Phase Induction Motor Using Rotor Resistance Control Method

    Get PDF
    This work is based on an intelligent speed control system with the application of fuzzy logic on a three phase induction motor. Fuzzy logic was applied to traditional method of speed control of three phase induction motor such as Rotor Resistance Control where inputs such as rotor resistance, line voltage and two loads attached to the motor were varied. With the variations in the inputs, it was observed that appropriate variations in outputs such as speed, slip, torque, output power and efficiency were achieved. By using the Mamdani Fuzzy Model, an analysis of rule-based Fuzzy Logic Controller was applied in which the system can be taught to predict the output depending on the variations in the input variables

    APPLICATION FUZZY MAMDANI TO DETERMINE THE RIPENESS LEVEL OF CRYSTAL GUAVA FRUIT

    Get PDF
    Crystal guava is one of Indonesia's flora diversity. The rind of the unripe crystal guava fruit is green, and the rind of the ripe crystal guava fruit is yellowish green. However, it is difficult to determine the ripeness of crystal guava due to the similar color of the fruit skin. Determining fruit ripeness is uncertain and therefore requires a way to deal with this uncertainty. One of the methods you can use is fuzzy Mamdani. In this study, the ripeness level of crystal guava is determined using fuzzy Mamdani. Crystal guava fruits fall into four ripeness categories: raw, half ripe, ripe, and very ripe. The data used is in the form of an RGB image separated from the background so that only crystal guava fruit objects are captured. The image of the fruit object was then extracted by looking for the median red, green, and blue at each pixel of the image. This value is used as input for the fuzzy Mamdani process. The fuzzy set and fuzzy rules that have been formed can be applied to determine the maturity level of crystal guava fruit by validating the results of 140 image data with an accuracy of 83,5%
    • …
    corecore