15,023 research outputs found

    Bad Data Injection Attack and Defense in Electricity Market using Game Theory Study

    Full text link
    Applications of cyber technologies improve the quality of monitoring and decision making in smart grid. These cyber technologies are vulnerable to malicious attacks, and compromising them can have serious technical and economical problems. This paper specifies the effect of compromising each measurement on the price of electricity, so that the attacker is able to change the prices in the desired direction (increasing or decreasing). Attacking and defending all measurements are impossible for the attacker and defender, respectively. This situation is modeled as a zero sum game between the attacker and defender. The game defines the proportion of times that the attacker and defender like to attack and defend different measurements, respectively. From the simulation results based on the PJM 5 Bus test system, we can show the effectiveness and properties of the studied game.Comment: To appear in IEEE Transactions on Smart Grid, Special Issue on Cyber, Physical, and System Security for Smart Gri

    A Colonel Blotto Game for Interdependence-Aware Cyber-Physical Systems Security in Smart Cities

    Full text link
    Smart cities must integrate a number of interdependent cyber-physical systems that operate in a coordinated manner to improve the well-being of the city's residents. A cyber-physical system (CPS) is a system of computational elements controlling physical entities. Large-scale CPSs are more vulnerable to attacks due to the cyber-physical interdependencies that can lead to cascading failures which can have a significant detrimental effect on a city. In this paper, a novel approach is proposed for analyzing the problem of allocating security resources, such as firewalls and anti-malware, over the various cyber components of an interdependent CPS to protect the system against imminent attacks. The problem is formulated as a Colonel Blotto game in which the attacker seeks to allocate its resources to compromise the CPS, while the defender chooses how to distribute its resources to defend against potential attacks. To evaluate the effects of defense and attack, various CPS factors are considered including human-CPS interactions as well as physical and topological characteristics of a CPS such as flow and capacity of interconnections and minimum path algorithms. Results show that, for the case in which the attacker is not aware of the CPS interdependencies, the defender can have a higher payoff, compared to the case in which the attacker has complete information. The results also show that, in the case of more symmetric nodes, due to interdependencies, the defender achieves its highest payoff at the equilibrium compared to the case with independent, asymmetric nodes

    A Method for Revealing and Addressing Security Vulnerabilities in Cyber-physical Systems by Modeling Malicious Agent Interactions with Formal Verification

    Get PDF
    Several cyber-attacks on the cyber-physical systems (CPS) that monitor and control critical infrastructure were publically announced over the last few years. Almost without exception, the proposed security solutions focus on preventing unauthorized access to the industrial control systems (ICS) at various levels – the defense in depth approach. While useful, it does not address the problem of making the systems more capable of responding to the malicious actions of an attacker once they have gained access to the system. The first step in making an ICS more resilient to an attacker is identifying the cyber security vulnerabilities the attacker can use during system design. This paper presents a method that reveals cyber security vulnerabilities in ICS through the formal modeling of the system and malicious agents. The inclusion of the malicious agent in the analysis of an existing systems identifies security vulnerabilities that are missed in traditional functional model checking

    A Polynomial Approach to Verifying the Existence of a Threatening Sensor Attacker

    Get PDF
    The development of cyber-physical systems (CPS) has brought much attention of researchers to cyber-attack and cyber-security. A sensor attacker targeting on a supervised discrete event system can modify a set of sensor readings and cause the closed-loop system to reach undesirable states. In this letter, we propose a new attack detection mechanism under which the supervisor only needs to keep track of the last observable event received. Given a plant and a supervisor enforcing a state specification, we define a sensor attacker threatening if it may cause the closed-loop system to enter a forbidden state. Our goal is to verify whether there exists such a threatening sensor attacker for a given controlled system. A new structure, called All Sensor Attack (ASA), is proposed to capture all possible sensor attacks launched by the attacker. Based on the ASA automaton, a necessary and sufficient condition for the existence of a stealthy threatening sensor attacker is presented. Finally, we show that the condition can be verified in polynomial time
    • …
    corecore