30 research outputs found

    Cube Attack on Courtois Toy Cipher

    Get PDF
    Abstract. The cube attack has been introduced by Itai Dinur and Adi Shamir [8] as a known plaintext attack on symmetric primitives. The attack has been applied to reduced variants of the stream ciphers Trivium [3, 8] and Grain-128 [2], reduced to three rounds variant of the block cipher Serpent [9] and reduced version of the hash function MD6 [3]. In the special case the attack has appeared in the M. Vielhaber ePrint articles [13, 14], where it has been named AIDA (Algebraic Initial Value Differential Attack ) and applied to the modified versions of Trivium. In this paper, we present the experimental results of application the cube attack to four rounds of the Courtois Toy Cipher (CTC) with the full recovery of 120-bit key. After that we extend the attack to five rounds by applying the meet-in-the-middle principle. Key words: Cube attack, symmetric primitives, Boolean polynomials, CTC, the meet-in-the-middle metho

    Can a Differential Attack Work for an Arbitrarily Large Number of Rounds?

    Get PDF
    Differential cryptanalysis is one of the oldest attacks on block ciphers. Can anything new be discovered on this topic? A related question is that of backdoors and hidden properties. There is substantial amount of research on how Boolean functions affect the security of ciphers, and comparatively, little research, on how block cipher wiring can be very special or abnormal. In this article we show a strong type of anomaly: where the complexity of a differential attack does not grow exponentially as the number of rounds increases. It will grow initially, and later will be lower bounded by a constant. At the end of the day the vulnerability is an ordinary single differential attack on the full state. It occurs due to the existence of a hidden polynomial invariant. We conjecture that this type of anomaly is not easily detectable if the attacker has limited resources

    ElimLin Algorithm Revisited

    Full text link
    ElimLin is a simple algorithm for solving polynomial systems of multivariate equations over small finite fields. It was initially proposed as a single tool by Courtois to attack DES. It can reveal some hidden linear equations existing in the ideal generated by the system. We report a number of key theorems on ElimLin. Our main result is to characterize ElimLin in terms of a sequence of intersections of vector spaces. It implies that the linear space generated by ElimLin is invariant with respect to any variable ordering during elimination and substitution. This can be seen as surprising given the fact that it eliminates variables. On the contrary, monomial ordering is a crucial factor in Gröbner basis algorithms such as F4. Moreover, we prove that the result of ElimLin is invariant with respect to any affine bijective variable change. Analyzing an overdefined dense system of equations, we argue that to obtain more linear equations in the succeeding iteration in ElimLin some restrictions should be satisfied. Finally, we compare the security of LBlock and MIBS block ciphers with respect to algebraic attacks and propose several attacks on Courtois Toy Cipher version 2 (CTC2) with distinct parameters using ElimLin

    Optimization and Guess-then-Solve Attacks in Cryptanalysis

    Get PDF
    In this thesis we study two major topics in cryptanalysis and optimization: software algebraic cryptanalysis and elliptic curve optimizations in cryptanalysis. The idea of algebraic cryptanalysis is to model a cipher by a Multivariate Quadratic (MQ) equation system. Solving MQ is an NP-hard problem. However, NP-hard problems have a point of phase transition where the problems become easy to solve. This thesis explores different optimizations to make solving algebraic cryptanalysis problems easier. We first worked on guessing a well-chosen number of key bits, a specific optimization problem leading to guess-then-solve attacks on GOST cipher. In addition to attacks, we propose two new security metrics of contradiction immunity and SAT immunity applicable to any cipher. These optimizations play a pivotal role in recent highly competitive results on full GOST. This and another cipher Simon, which we cryptanalyzed were submitted to ISO to become a global encryption standard which is the reason why we study the security of these ciphers in a lot of detail. Another optimization direction is to use well-selected data in conjunction with Plaintext/Ciphertext pairs following a truncated differential property. These allow to supplement an algebraic attack with extra equations and reduce solving time. This was a key innovation in our algebraic cryptanalysis work on NSA block cipher Simon and we could break up to 10 rounds of Simon64/128. The second major direction in our work is to inspect, analyse and predict the behaviour of ElimLin attack the complexity of which is very poorly understood, at a level of detail never seen before. Our aim is to extrapolate and discover the limits of such attacks, and go beyond with several types of concrete improvement. Finally, we have studied some optimization problems in elliptic curves which also deal with polynomial arithmetic over finite fields. We have studied existing implementations of the secp256k1 elliptic curve which is used in many popular cryptocurrency systems such as Bitcoin and we introduce an optimized attack on Bitcoin brain wallets and improved the state of art attack by 2.5 times

    Ten years of cube attacks

    Get PDF
    In 2009, Dinur and Shamir proposed the cube attack, an algebraic cryptanalysis technique that only requires black box access to a target cipher. Since then, this attack has received both many criticisms and endorsements from crypto community; this work aims at revising and collecting the many attacks that have been proposed starting from it. We categorise all of these attacks in five classes; for each class, we provide a brief summary description along with the state-of-the-art references and the most recent cryptanalysis results. Furthermore, we extend and refine the new notation we proposed in 2021 and we use it to provide a consistent definition for each attack family. Finally, in the appendix, we provide an in-depth description of the kite attack framework, a cipher independent tool we firstly proposed in 2018 that implements the kite attack on GPUs. To prove its effectiveness, we use Mickey2.0 as a use case, showing how to embed it in the framework

    On Selection of Samples in Algebraic Attacks and a New Technique to Find Hidden Low Degree Equations

    Get PDF
    The best way of selecting samples in algebraic attacks against block ciphers is not well explored and understood. We introduce a simple strategy for selecting the plaintexts and demonstrate its strength by breaking reduced-round KATAN, LBLOCK and SIMON. For each case, we present a practical attack on reduced round version which outperforms previous attempts of algebraic cryptanalysis whose complexities were close to exhaustive search. The attack is based on the selection of samples using cube attack and ELIMLIN which was presented at FSE'12, and a new technique called proning. In the case of LBLOCK, we break 10 out of 32 rounds. In KATAN, we break 78 out of 254 rounds. Unlike previous attempts which break smaller number of rounds, we do not guess any bit of the key and we only use structural properties of the cipher to be able to break a higher number of rounds with much lower complexity. We show that cube attacks owe their success to the same properties and therefore, can be used as a heuristic for selecting the samples in an algebraic attack. The performance of ELIMLIN is further enhanced by the new proning technique, which allows to discover linear equations that are not found by ELIMLIN

    Error-Tolerant Algebraic Side-Channel Attacks Using BEE

    Get PDF
    Algebraic side-channel attacks are a type of side-channel analysis which can recover the secret information with a small number of samples (e.g., power traces). However, this type of side-channel analysis is sensitive to measurement errors which may make the attacks fail. In this paper, we propose a new method of algebraic side-channel attacks which considers noisy leakages as integers restricted to intervls and finds out the secret information with a constraint programming solver named BEE. To demonstrate the efficiency of this new method in algebraic side-channel attacks, we analyze some popular implementations of block ciphers---PRESENT, AES, and SIMON under the Hamming weight or Hamming distance leakage model. For AES, our method requires the least leakages compared with existing works under the same error model. For both PRESENT and SIMON, we provide the first analytical results of them under algebraic side-channel attacks in the presence of errors. To further demonstrate the wide applicability of this new method, we also extend it to cold boot attacks. In the cold boot attacks against AES, our method increases the success rate by over 25%25\% than previous works

    Algebraic Cryptanalysis of Deterministic Symmetric Encryption

    Get PDF
    Deterministic symmetric encryption is widely used in many cryptographic applications. The security of deterministic block and stream ciphers is evaluated using cryptanalysis. Cryptanalysis is divided into two main categories: statistical cryptanalysis and algebraic cryptanalysis. Statistical cryptanalysis is a powerful tool for evaluating the security but it often requires a large number of plaintext/ciphertext pairs which is not always available in real life scenario. Algebraic cryptanalysis requires a smaller number of plaintext/ciphertext pairs but the attacks are often underestimated compared to statistical methods. In algebraic cryptanalysis, we consider a polynomial system representing the cipher and a solution of this system reveals the secret key used in the encryption. The contribution of this thesis is twofold. Firstly, we evaluate the performance of existing algebraic techniques with respect to number of plaintext/ciphertext pairs and their selection. We introduce a new strategy for selection of samples. We build this strategy based on cube attacks, which is a well-known technique in algebraic cryptanalysis. We use cube attacks as a fast heuristic to determine sets of plaintexts for which standard algebraic methods, such as Groebner basis techniques or SAT solvers, are more efficient. Secondly, we develop a~new technique for algebraic cryptanalysis which allows us to speed-up existing Groebner basis techniques. This is achieved by efficient finding special polynomials called mutants. Using these mutants in Groebner basis computations and SAT solvers reduces the computational cost to solve the system. Hence, both our methods are designed as tools for building polynomial system representing a cipher. Both tools can be combined and they lead to a significant speedup, even for very simple algebraic solvers

    A survey on machine learning applied to symmetric cryptanalysis

    Get PDF
    In this work we give a short review of the recent progresses of machine learning techniques applied to cryptanalysis of symmetric ciphers, with particular focus on artificial neural networks. We start with some terminology and basics of neural networks, to then classify the recent works in two categories: "black-box cryptanalysis", techniques that not require previous information about the cipher, and "neuro-aided cryptanalysis", techniques used to improve existing methods in cryptanalysis

    Rasta: A cipher with low ANDdepth and few ANDs per bit

    Get PDF
    Recent developments in multi party computation (MPC) and fully homomorphic encryption (FHE) promoted the design and analysis of symmetric cryptographic schemes that minimize multiplications in one way or another. In this paper, we propose with Rasta a design strategy for symmetric encryption that has ANDdepth d and at the same time only needs d ANDs per encrypted bit. Even for very low values of d between 2 and 6 we can give strong evidence that attacks may not exist. This contributes to a better understanding of the limits of what concrete symmetric-key constructions can theoretically achieve with respect to AND-related metrics, and is to the best of our knowledge the first attempt that minimizes both metrics simultaneously. Furthermore, we can give evidence that for choices of d between 4 and 6 the resulting implementation properties may well be competitive by testing our construction in the use-case of removing the large ciphertext-expansion when using the BGV scheme
    corecore