43 research outputs found

    Mitigating Stealthy Link Flooding DDoS Attacks Using SDN-Based Moving Target Defense

    Get PDF
    With the increasing diversity and complication of Distributed Denial-of-Service (DDoS) attacks, it has become extremely challenging to design a fully protected network. For instance, recently, a new type of attack called Stealthy Link Flooding Attack (SLFA) has been shown to cause critical network disconnection problems, where the attacker targets the communication links in the surrounding area of a server. The existing defense mechanisms for this type of attack are based on the detection of some unusual traffic patterns; however, this might be too late as some severe damage might already be done. These mechanisms also do not consider countermeasures during the reconnaissance phase of these attacks. Over the last few years, moving target defense (MTD) has received increasing attention from the research community. The idea is based on frequently changing the network configurations to make it much more difficult for the attackers to attack the network. In this dissertation, we investigate several novel frameworks based on MTD to defend against contemporary DDoS attacks. Specifically, we first introduce MTD against the data phase of SLFA, where the bots are sending data packets to target links. In this framework, we mitigate the traffic if the bandwidth of communication links exceeds the given threshold, and experimentally show that our method significantly alleviates the congestion. As a second work, we propose a framework that considers the reconnaissance phase of SLFA, where the attacker strives to discover critical communication links. We create virtual networks to deceive the attacker and provide forensic features. In our third work, we consider the legitimate network reconnaissance requests while keeping the attacker confused. To this end, we integrate cloud technologies as overlay networks to our system. We demonstrate that the developed mechanism preserves the security of the network information with negligible delays. Finally, we address the problem of identifying and potentially engaging with the attacker. We model the interaction between attackers and defenders into a game and derive a defense mechanism based on the equilibria of the game. We show that game-based mechanisms could provide similar protection against SLFAs like the extensive periodic MTD solution with significantly reduced overhead. The frameworks in this dissertation were verified with extensive experiments as well as with the theoretical analysis. The research in this dissertation has yielded several novel defense mechanisms that provide comprehensive protection against SLFA. Besides, we have shown that they can be integrated conveniently and efficiently to the current network infrastructure

    Taking Back the Internet: Defeating DDoS and Adverse Network Conditions via Reactive BGP Routing

    Get PDF
    In this work, we present Nyx, a system for mitigating Distributed Denial of Service (DDoS) attacks by routing critical traffic from known benign networks around links under attack from a massively distributed botnet. Nyx alters how Autonomous Systems (ASes) handle route selection and advertisement in the Border Gateway Protocol (BGP) in order to achieve isolation of critical traffic away from congested links onto alternative, less congested paths. Our system controls outbound paths through the normal process of BGP path selection, while return paths from critical ASes are controlled through the use of existing traffic engineering techniques. To prevent alternative paths from including attacked network links, Nyx employs strategic lying in a manner that is functional in the presence of RPKI. Our system only exposes the alternate path to the networks needed for forwarding and those networks\u27 customer cones, thus strategically reducing the number of ASes outside of the critical AS that receive the alternative path. By leaving the path taken by malicious traffic unchanged and limiting the amount of added traffic load placed on the alternate path, our system causes less than 10 ASes on average to be disturbed by our inbound traffic migration.Nyx is the first system that scalably and effectively mitigates transit-link DDoS attacks that cannot be handled by existing and costly traffic filtering or prioritization techniques. Unlike the prior state of the art, Nyx is highly deployable, requiring only minor changes to router policies at the deployer, and requires no assistance from external networks. Using our own Internet-scale simulator, we find that in more than 98% of cases our system can successfully migrate critical traffic off of the network segments under transit-link DDoS. In over 98% of cases, the alternate path provides some degree of relief over the original path. Finally, in over 70% of cases where Nyx can migrate critical traffic off attacked segments, the new path has sufficient capacity to handle the entire traffic load without congestion

    The Maestro Attack: Orchestrating Malicious Flows with BGP

    Get PDF
    We present the Maestro Attack, a Link Flooding Attack (LFA) that leverages Border Gateway Protocol (BGP) engineering techniques to improve the flow density of botnet-sourced Distributed Denial of Service (DDoS) on transit links. Specific-prefix routes poisoned for certain Autonomous Systems (ASes) are advertised by a compromised network operator to channel bot-to-bot ows over a target link. Publicly available AS relationship data feeds a greedy heuristic that iteratively builds a poison set of ASes to perform the attack. Given a compromised BGP speaker with advantageous positioning relative to the target link in the Internet topology, an adversary can expect to enhance flow density by more than 30 percent. For a large botnet (e.g., Mirai), the bottom line result is augmenting the DDoS by more than a million additional infected hosts. Interestingly, the size of the adversary-controlled AS plays little role in this effect; attacks on large core links can be effected by small, resource-limited ASes. Link vulnerability is evaluated across several metrics, including BGP betweenness and botnet flow density, and we assess where an adversary must be positioned to execute the attack most successfully. Mitigations are presented for network operators seeking to insulate themselves from this attack
    corecore