8,567 research outputs found

    A novel spherical actuator: Design and control

    Get PDF
    The paper describes the design and control of a novel spherical permanent magnet actuator which is capable of two-degrees-freedom and a high specific torque. Based on an analytical actuator model, an optimal design procedure is developed to yield maximum output torque or maximum system acceleration for a given payload. The control of the actuator, whose dynamics are similar to those of robotic manipulators, is facilitated by the establishment of a complete actuation system model. A robust control law is applied, and its effectiveness is demonstrated by computer simulatio

    Quadrature Points via Heat Kernel Repulsion

    Full text link
    We discuss the classical problem of how to pick NN weighted points on a d−d-dimensional manifold so as to obtain a reasonable quadrature rule 1∣M∣∫Mf(x)dx≃1N∑n=1Naif(xi). \frac{1}{|M|}\int_{M}{f(x) dx} \simeq \frac{1}{N} \sum_{n=1}^{N}{a_i f(x_i)}. This problem, naturally, has a long history; the purpose of our paper is to propose selecting points and weights so as to minimize the energy functional \sum_{i,j =1}^{N}{ a_i a_j \exp\left(-\frac{d(x_i,x_j)^2}{4t}\right) } \rightarrow \min, \quad \mbox{where}~t \sim N^{-2/d}, d(x,y)d(x,y) is the geodesic distance and dd is the dimension of the manifold. This yields point sets that are theoretically guaranteed, via spectral theoretic properties of the Laplacian −Δ-\Delta, to have good properties. One nice aspect is that the energy functional is universal and independent of the underlying manifold; we show several numerical examples

    On Born's conjecture about optimal distribution of charges for an infinite ionic crystal

    Get PDF
    We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born's conjecture about the optimality of the rock-salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results holds for a class of completely monotone interaction potentials which includes Coulomb type interactions. In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.Comment: 32 pages. 3 Figures. To appear in Journal of Nonlinear Science. DOI :10.1007/s00332-018-9460-
    • …
    corecore