10,684 research outputs found

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    Distributed Convergence Verification for Gaussian Belief Propagation

    Full text link
    Gaussian belief propagation (BP) is a computationally efficient method to approximate the marginal distribution and has been widely used for inference with high dimensional data as well as distributed estimation in large-scale networks. However, the convergence of Gaussian BP is still an open issue. Though sufficient convergence conditions have been studied in the literature, verifying these conditions requires gathering all the information over the whole network, which defeats the main advantage of distributed computing by using Gaussian BP. In this paper, we propose a novel sufficient convergence condition for Gaussian BP that applies to both the pairwise linear Gaussian model and to Gaussian Markov random fields. We show analytically that this sufficient convergence condition can be easily verified in a distributed way that satisfies the network topology constraint.Comment: accepted by Asilomar Conference on Signals, Systems, and Computers, 2017, Asilomar, Pacific Grove, CA. arXiv admin note: text overlap with arXiv:1706.0407

    Generating constrained random graphs using multiple edge switches

    Get PDF
    The generation of random graphs using edge swaps provides a reliable method to draw uniformly random samples of sets of graphs respecting some simple constraints, e.g. degree distributions. However, in general, it is not necessarily possible to access all graphs obeying some given con- straints through a classical switching procedure calling on pairs of edges. We therefore propose to get round this issue by generalizing this classical approach through the use of higher-order edge switches. This method, which we denote by "k-edge switching", makes it possible to progres- sively improve the covered portion of a set of constrained graphs, thereby providing an increasing, asymptotically certain confidence on the statistical representativeness of the obtained sample.Comment: 15 page

    Convergence analysis of the information matrix in Gaussian belief propagation

    Get PDF
    Gaussian belief propagation (BP) has been widely used for distributed estimation in large-scale networks such as the smart grid, communication networks, and social networks, where local measurements/observations are scattered over a wide geographical area. However, the convergence of Gaus- sian BP is still an open issue. In this paper, we consider the convergence of Gaussian BP, focusing in particular on the convergence of the information matrix. We show analytically that the exchanged message information matrix converges for arbitrary positive semidefinite initial value, and its dis- tance to the unique positive definite limit matrix decreases exponentially fast.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0201

    Polynomial Linear Programming with Gaussian Belief Propagation

    Full text link
    Interior-point methods are state-of-the-art algorithms for solving linear programming (LP) problems with polynomial complexity. Specifically, the Karmarkar algorithm typically solves LP problems in time O(n^{3.5}), where nn is the number of unknown variables. Karmarkar's celebrated algorithm is known to be an instance of the log-barrier method using the Newton iteration. The main computational overhead of this method is in inverting the Hessian matrix of the Newton iteration. In this contribution, we propose the application of the Gaussian belief propagation (GaBP) algorithm as part of an efficient and distributed LP solver that exploits the sparse and symmetric structure of the Hessian matrix and avoids the need for direct matrix inversion. This approach shifts the computation from realm of linear algebra to that of probabilistic inference on graphical models, thus applying GaBP as an efficient inference engine. Our construction is general and can be used for any interior-point algorithm which uses the Newton method, including non-linear program solvers.Comment: 7 pages, 1 figure, appeared in the 46th Annual Allerton Conference on Communication, Control and Computing, Allerton House, Illinois, Sept. 200
    • …
    corecore