Interior-point methods are state-of-the-art algorithms for solving linear
programming (LP) problems with polynomial complexity. Specifically, the
Karmarkar algorithm typically solves LP problems in time O(n^{3.5}), where n
is the number of unknown variables. Karmarkar's celebrated algorithm is known
to be an instance of the log-barrier method using the Newton iteration. The
main computational overhead of this method is in inverting the Hessian matrix
of the Newton iteration. In this contribution, we propose the application of
the Gaussian belief propagation (GaBP) algorithm as part of an efficient and
distributed LP solver that exploits the sparse and symmetric structure of the
Hessian matrix and avoids the need for direct matrix inversion. This approach
shifts the computation from realm of linear algebra to that of probabilistic
inference on graphical models, thus applying GaBP as an efficient inference
engine. Our construction is general and can be used for any interior-point
algorithm which uses the Newton method, including non-linear program solvers.Comment: 7 pages, 1 figure, appeared in the 46th Annual Allerton Conference on
Communication, Control and Computing, Allerton House, Illinois, Sept. 200