2,665 research outputs found

    Coded Caching based on Combinatorial Designs

    Full text link
    We consider the standard broadcast setup with a single server broadcasting information to a number of clients, each of which contains local storage (called \textit{cache}) of some size, which can store some parts of the available files at the server. The centralized coded caching framework, consists of a caching phase and a delivery phase, both of which are carefully designed in order to use the cache and the channel together optimally. In prior literature, various combinatorial structures have been used to construct coded caching schemes. In this work, we propose a binary matrix model to construct the coded caching scheme. The ones in such a \textit{caching matrix} indicate uncached subfiles at the users. Identity submatrices of the caching matrix represent transmissions in the delivery phase. Using this model, we then propose several novel constructions for coded caching based on the various types of combinatorial designs. While most of the schemes constructed in this work (based on existing designs) have a high cache requirement (uncached fraction being Θ(1K)\Theta(\frac{1}{\sqrt{K}}) or Θ(1K)\Theta(\frac{1}{K}), KK being the number of users), they provide a rate that is either constant or decreasing (O(1K)O(\frac{1}{K})) with increasing KK, and moreover require competitively small levels of subpacketization (being O(Ki),1≤i≤3O(K^i), 1\leq i\leq 3), which is an extremely important parameter in practical applications of coded caching. We mark this work as another attempt to exploit the well-developed theory of combinatorial designs for the problem of constructing caching schemes, utilizing the binary caching model we develop.Comment: 10 pages, Appeared in Proceedings of IEEE ISIT 201

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

    Full text link
    Deterministic constructions of measurement matrices in compressed sensing (CS) are considered in this paper. The constructions are inspired by the recent discovery of Dimakis, Smarandache and Vontobel which says that parity-check matrices of good low-density parity-check (LDPC) codes can be used as {provably} good measurement matrices for compressed sensing under â„“1\ell_1-minimization. The performance of the proposed binary measurement matrices is mainly theoretically analyzed with the help of the analyzing methods and results from (finite geometry) LDPC codes. Particularly, several lower bounds of the spark (i.e., the smallest number of columns that are linearly dependent, which totally characterizes the recovery performance of â„“0\ell_0-minimization) of general binary matrices and finite geometry matrices are obtained and they improve the previously known results in most cases. Simulation results show that the proposed matrices perform comparably to, sometimes even better than, the corresponding Gaussian random matrices. Moreover, the proposed matrices are sparse, binary, and most of them have cyclic or quasi-cyclic structure, which will make the hardware realization convenient and easy.Comment: 12 pages, 11 figure

    All or Nothing at All

    Get PDF
    We continue a study of unconditionally secure all-or-nothing transforms (AONT) begun in \cite{St}. An AONT is a bijective mapping that constructs s outputs from s inputs. We consider the security of t inputs, when s-t outputs are known. Previous work concerned the case t=1; here we consider the problem for general t, focussing on the case t=2. We investigate constructions of binary matrices for which the desired properties hold with the maximum probability. Upper bounds on these probabilities are obtained via a quadratic programming approach, while lower bounds can be obtained from combinatorial constructions based on symmetric BIBDs and cyclotomy. We also report some results on exhaustive searches and random constructions for small values of s.Comment: 23 page
    • …
    corecore