602 research outputs found

    The Connectivities of Leaf Graphs of 2-Connected Graphs

    Get PDF
    AbstractGiven a connected graph G, denote by V the family of all the spanning trees of G. Define an adjacency relation in V as follows: the spanning trees t and tâ€Č are said to be adjacent if for some vertex u∈V, t−u is connected and coincides with tâ€Č−u. The resultant graph G is called the leaf graph of G. The purpose of this paper is to show that if G is 2-connected with minimal degree ÎŽ, then G is (2ή−2)-connected

    Statistical mechanics of the vertex-cover problem

    Full text link
    We review recent progress in the study of the vertex-cover problem (VC). VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits an coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping VC to a hard-core lattice gas, and then applying techniques like the replica trick or the cavity approach. Using these methods, the phase diagram of VC could be obtained exactly for connectivities c<ec<e, where VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c>ec>e, the solution of VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for VC. Finally, we describe recent results for VC when studied on other ensembles of finite- and infinite-dimensional graphs.Comment: review article, 26 pages, 9 figures, to appear in J. Phys. A: Math. Ge

    Dynamics of heuristic optimization algorithms on random graphs

    Full text link
    In this paper, the dynamics of heuristic algorithms for constructing small vertex covers (or independent sets) of finite-connectivity random graphs is analysed. In every algorithmic step, a vertex is chosen with respect to its vertex degree. This vertex, and some environment of it, is covered and removed from the graph. This graph reduction process can be described as a Markovian dynamics in the space of random graphs of arbitrary degree distribution. We discuss some solvable cases, including algorithms already analysed using different techniques, and develop approximation schemes for more complicated cases. The approximations are corroborated by numerical simulations.Comment: 19 pages, 3 figures, version to app. in EPJ

    Phase transition for cutting-plane approach to vertex-cover problem

    Full text link
    We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical model exhibiting phase transitions on random graphs, e.g., Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at connectivity c=e=2.7183 from replica symmetric to replica-symmetry broken. For the vertex-cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by exploring the landscape of feasible configurations, change close to this phase transition from "easy" to "hard". In this work, we consider an algorithm which has a completely different strategy: The problem is mapped onto a linear programming problem augmented by a cutting-plane approach, hence the algorithm operates in a space OUTSIDE the space of feasible configurations until the final step, where a solution is found. Here we show that this type of algorithm also exhibits an "easy-hard" transition around c=e, which strongly indicates that the typical hardness of a problem is fundamental to the problem and not due to a specific representation of the problem.Comment: 4 pages, 3 figure

    Efficient algorithm for computing all low s-t edge connectivities in directed graphs

    Get PDF
    LNCS v. 9235 entitled: Mathematical Foundations of Computer Science 2015: 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part 2Given a directed graph with n nodes and m edges, the (strong) edge connectivity λ (u; v) between two nodes u and v is the minimum number of edges whose deletion makes u and v not strongly connected. The problem of computing the edge connectivities between all pairs of nodes of a directed graph can be done in O(m ω) time by Cheung, Lau and Leung (FOCS 2011), where ω is the matrix multiplication factor (≈ 2:373), or in Õ (mn1:5) time using O(n) computations of max-flows by Cheng and Hu (IPCO 1990). We consider in this paper the “low edge connectivity” problem, which aims at computing the edge connectivities for the pairs of nodes (u; v) such that λ (u; v) ≀ k. While the undirected version of this problem was considered by Hariharan, Kavitha and Panigrahi (SODA 2007), who presented an algorithm with expected running time Õ (m+nk3), no algorithm better than computing all-pairs edge connectivities was proposed for directed graphs. We provide an algorithm that computes all low edge connectivities in O(kmn) time, improving the previous best result of O (min(m ω, mn1:5)) when k ≀ √ n. Our algorithm also computes a minimum u-v cut for each pair of nodes (u; v) with λ (u; v) ≀ k.postprin

    Minimum Cycle Base of Graphs Identified by Two Planar Graphs

    Get PDF
    In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds

    The Phase Diagram of 1-in-3 Satisfiability Problem

    Get PDF
    We study the typical case properties of the 1-in-3 satisfiability problem, the boolean satisfaction problem where a clause is satisfied by exactly one literal, in an enlarged random ensemble parametrized by average connectivity and probability of negation of a variable in a clause. Random 1-in-3 Satisfiability and Exact 3-Cover are special cases of this ensemble. We interpolate between these cases from a region where satisfiability can be typically decided for all connectivities in polynomial time to a region where deciding satisfiability is hard, in some interval of connectivities. We derive several rigorous results in the first region, and develop the one-step--replica-symmetry-breaking cavity analysis in the second one. We discuss the prediction for the transition between the almost surely satisfiable and the almost surely unsatisfiable phase, and other structural properties of the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure

    The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic

    Full text link
    We study the dynamics of a backtracking procedure capable of proving uncolourability of graphs, and calculate its average running time T for sparse random graphs, as a function of the average degree c and the number of vertices N. The analysis is carried out by mapping the history of the search process onto an out-of-equilibrium (multi-dimensional) surface growth problem. The growth exponent of the average running time is quantitatively predicted, in agreement with simulations.Comment: 5 figure
    • 

    corecore