22,048 research outputs found

    Programing strand displacement reaction pathways using small molecular DNA binders

    Get PDF
    DNA has been used in nature as carriers of heredity information for billions of years. The last four decades have witnessed the success of DNA nanotechnology, an interdisciplinary research area in which DNA is used as a synthetic engineering tool rather than a carrier of genetic information. The growth of DNA nanotechnology crosses the boundaries between physics, chemistry, biology and computer science and enables DNA to function as an electronic component, substrate, drug delivery vector and data storage unit. The hybridization of DNA strictly follows the by Watson-Crick rule; thus, DNA base pairs are the most reliable and predictable building block in the true nanometer range. New methods and designs for controlling DNA hybridization have always provided the most essential momentum for the development of DNA nanotechnology. When small molecules bind to the double helical structure of DNA, either through intercalation or minor groove binding, the stability and functionality of DNA may be significantly altered, which is a fundamental basis for many therapeutic and sensing applications. Herein, we reveal, for the first time, that small molecular DNA binders may also be used to program the reaction pathways of toehold-mediated DNA strand displacement, an elementary building block in DNA nanotechnology

    Bionanomedicine: A “Panacea” In Medicine?

    Full text link
    Recent advances in nanotechnology, biotechnology, bioinformatics, and materials science have prompted novel developments in the field of nanomedicine. Enhancements in the theranostics, computational information, and management of diseases/disorders are desperately required. It may now be conceivable to accomplish checked improvements in both of these areas utilising nanomedicine. This scientific and concise review concentrates on the fundamentals and potential of nanomedicine, particularly nanoparticles and their advantages, nanoparticles for siRNA conveyance, nanopores, nanodots, nanotheragnostics, nanodrugs and targeting mechanisms, and aptamer nanomedicine. The combination of various scientific fields is quickening these improvements, and these interdisciplinary endeavours to have significant progressively outstretching influences on different fields of research. The capacities of nanomedicine are immense, and nanotechnology could give medicine a completely new standpoint

    The challenges of nanostructures for theory

    Get PDF
    It is tempting to believe that modelling in nanotechnology is much the same as that for conventional solid-state physics. However, important areas of nanotechnology address different systems. The mechanics of DNA (for instance) resembles spaghetti more than silicon, the statistical physics needed is often not carrier statistics, and the role of viscosity (the low Reynolds number limit) is not always the familiar one. The idea of equilibrium may be irrelevant, as the kinetics of nonequilibrium (perhaps quasi-steady state) can be crucial. Even when the issues are limited to nanoscale structures (rather than functions), there is a complex range of ideas. Some features, like elasticity and electrostatic energies, have clear macroscopic analogies, but different questions emerge, such as the accuracy of self-organisation. Others concepts like epitaxy and templating are usually micro- or mesostructural. Some of the ideas, which emerge in modelling for the nanoscale, suggest parallels between molecular motors and recombination enhanced diffusion in semiconductors. (C) 2002 Elsevier Science B.V. All rights reserved

    The future of human nature: a symposium on the promises and challenges of the revolutions in genomics and computer science, April 10, 11, and 12, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's Symposium on the Promises and Challenges of the Revolutions in Genomics and Computer Science took place during April 10, 11, and 12, 2003. Co-organized by Charles DeLisi and Kenneth Lewes; sponsored by Boston University, the Frederick S. Pardee Center for the Study of the Longer-Range Future.This conference focused on scientific and technological advances in genetics, computer science, and their convergence during the next 35 to 250 years. In particular, it focused on directed evolution, the futures it allows, the shape of society in those futures, and the robustness of human nature against technological change at the level of individuals, groups, and societies. It is taken as a premise that biotechnology and computer science will mature and will reinforce one another. During the period of interest, human cloning, germ-line genetic engineering, and an array of reproductive technologies will become feasible and safe. Early in this period, we can reasonably expect the processing power of a laptop computer to exceed the collective processing power of every human brain on the planet; later in the period human/machine interfaces will begin to emerge. Whether such technologies will take hold is not known. But if they do, human evolution is likely to proceed at a greatly accelerated rate; human nature as we know it may change markedly, if it does not disappear altogether, and new intelligent species may well be created

    Design of DNA origami

    Get PDF
    The generation of arbitrary patterns and shapes at very small scales is at the heart of our effort to miniaturize circuits and is fundamental to the development of nanotechnology. Here I review a recently developed method for folding long single strands of DNA into arbitrary two-dimensional shapes using a raster fill technique - 'scaffolded DNA origami'. Shapes up to 100 nanometers in diameter can be approximated with a resolution of 6 nanometers and decorated with patterns of roughly 200 binary pixels at the same resolution. Experimentally verified by the creation of a dozen shapes and patterns, the method is easy, high yield, and lends itself well to automated design and manufacture. So far, CAD tools for scaffolded DNA origami are simple, require hand-design of the folding path, and are restricted to two dimensional designs. If the method gains wide acceptance, better CAD tools will be required

    Generalized crystallography

    Get PDF
    X-ray crystal structure analysis can now be seen as a special kind of microscopy which is being extended to the recognition and examination of many kinds of ordered structure more general than crystals and which leads to their synthesis or construction by various methods. Electron microscopy and many other techniques now combine to give a coherent science of structure at the scale range of Ă…ngstroms to microns, atoms to assemblies visible to the eye, which should continue to be called crystallography although it overlaps with nanotechnology, molecular biology, and solid state physics. Most generally, a crystal is a structure the description of which is much smaller than the structure itself and this view leads to the consideration of structures as carriers of information and on to wider concerns with growth, form, morphogenesis, and life itself

    DNA Computing by Self-Assembly

    Get PDF
    Information and algorithms appear to be central to biological organization and processes, from the storage and reproduction of genetic information to the control of developmental processes to the sophisticated computations performed by the nervous system. Much as human technology uses electronic microprocessors to control electromechanical devices, biological organisms use biochemical circuits to control molecular and chemical events. The engineering and programming of biochemical circuits, in vivo and in vitro, would transform industries that use chemical and nanostructured materials. Although the construction of biochemical circuits has been explored theoretically since the birth of molecular biology, our practical experience with the capabilities and possible programming of biochemical algorithms is still very young

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of “Frontiers in Plasmonics as Enabling Science in Photonics and Beyond” at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
    • …
    corecore