79,654 research outputs found

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    Efficient Online Quantum Generative Adversarial Learning Algorithms with Applications

    Full text link
    The exploration of quantum algorithms that possess quantum advantages is a central topic in quantum computation and quantum information processing. One potential candidate in this area is quantum generative adversarial learning (QuGAL), which conceptually has exponential advantages over classical adversarial networks. However, the corresponding learning algorithm remains obscured. In this paper, we propose the first quantum generative adversarial learning algorithm-- the quantum multiplicative matrix weight algorithm (QMMW)-- which enables the efficient processing of fundamental tasks. The computational complexity of QMMW is polynomially proportional to the number of training rounds and logarithmically proportional to the input size. The core concept of the proposed algorithm combines QuGAL with online learning. We exploit the implementation of QuGAL with parameterized quantum circuits, and numerical experiments for the task of entanglement test for pure state are provided to support our claims

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page

    Quantifying Resource Use in Computations

    Get PDF
    It is currently not possible to quantify the resources needed to perform a computation. As a consequence, it is not possible to reliably evaluate the hardware resources needed for the application of algorithms or the running of programs. This is apparent in both computer science, for instance, in cryptanalysis, and in neuroscience, for instance, comparative neuro-anatomy. A System versus Environment game formalism is proposed based on Computability Logic that allows to define a computational work function that describes the theoretical and physical resources needed to perform any purely algorithmic computation. Within this formalism, the cost of a computation is defined as the sum of information storage over the steps of the computation. The size of the computational device, eg, the action table of a Universal Turing Machine, the number of transistors in silicon, or the number and complexity of synapses in a neural net, is explicitly included in the computational cost. The proposed cost function leads in a natural way to known computational trade-offs and can be used to estimate the computational capacity of real silicon hardware and neural nets. The theory is applied to a historical case of 56 bit DES key recovery, as an example of application to cryptanalysis. Furthermore, the relative computational capacities of human brain neurons and the C. elegans nervous system are estimated as an example of application to neural nets.Comment: 26 pages, no figure
    • ā€¦
    corecore