124 research outputs found

    Three qubit entanglement within graphical Z/X-calculus

    Full text link
    The compositional techniques of categorical quantum mechanics are applied to analyse 3-qubit quantum entanglement. In particular the graphical calculus of complementary observables and corresponding phases due to Duncan and one of the authors is used to construct representative members of the two genuinely tripartite SLOCC classes of 3-qubit entangled states, GHZ and W. This nicely illustrates the respectively pairwise and global tripartite entanglement found in the W- and GHZ-class states. A new concept of supplementarity allows us to characterise inhabitants of the W class within the abstract diagrammatic calculus; these method extends to more general multipartite qubit states.Comment: In Proceedings HPC 2010, arXiv:1103.226

    A Diagrammatic Axiomatisation for Qubit Entanglement

    Full text link
    Diagrammatic techniques for reasoning about monoidal categories provide an intuitive understanding of the symmetries and connections of interacting computational processes. In the context of categorical quantum mechanics, Coecke and Kissinger suggested that two 3-qubit states, GHZ and W, may be used as the building blocks of a new graphical calculus, aimed at a diagrammatic classification of multipartite qubit entanglement that would highlight the communicational properties of quantum states, and their potential uses in cryptographic schemes. In this paper, we present a full graphical axiomatisation of the relations between GHZ and W: the ZW calculus. This refines a version of the preexisting ZX calculus, while keeping its most desirable characteristics: undirectedness, a large degree of symmetry, and an algebraic underpinning. We prove that the ZW calculus is complete for the category of free abelian groups on a power of two generators - "qubits with integer coefficients" - and provide an explicit normalisation procedure.Comment: 12 page

    The GHZ/W-calculus contains rational arithmetic

    Full text link
    Graphical calculi for representing interacting quantum systems serve a number of purposes: compositionally, intuitive graphical reasoning, and a logical underpinning for automation. The power of these calculi stems from the fact that they embody generalized symmetries of the structure of quantum operations, which, for example, stretch well beyond the Choi-Jamiolkowski isomorphism. One such calculus takes the GHZ and W states as its basic generators. Here we show that this language allows one to encode standard rational calculus, with the GHZ state as multiplication, the W state as addition, the Pauli X gate as multiplicative inversion, and the Pauli Z gate as additive inversion.Comment: In Proceedings HPC 2010, arXiv:1103.226

    Synthesising Graphical Theories

    Full text link
    In recent years, diagrammatic languages have been shown to be a powerful and expressive tool for reasoning about physical, logical, and semantic processes represented as morphisms in a monoidal category. In particular, categorical quantum mechanics, or "Quantum Picturalism", aims to turn concrete features of quantum theory into abstract structural properties, expressed in the form of diagrammatic identities. One way we search for these properties is to start with a concrete model (e.g. a set of linear maps or finite relations) and start composing generators into diagrams and looking for graphical identities. Naively, we could automate this procedure by enumerating all diagrams up to a given size and check for equalities, but this is intractable in practice because it produces far too many equations. Luckily, many of these identities are not primitive, but rather derivable from simpler ones. In 2010, Johansson, Dixon, and Bundy developed a technique called conjecture synthesis for automatically generating conjectured term equations to feed into an inductive theorem prover. In this extended abstract, we adapt this technique to diagrammatic theories, expressed as graph rewrite systems, and demonstrate its application by synthesising a graphical theory for studying entangled quantum states.Comment: 10 pages, 22 figures. Shortened and one theorem adde

    Environment and classical channels in categorical quantum mechanics

    Full text link
    We present a both simple and comprehensive graphical calculus for quantum computing. In particular, we axiomatize the notion of an environment, which together with the earlier introduced axiomatic notion of classical structure enables us to define classical channels, quantum measurements and classical control. If we moreover adjoin the earlier introduced axiomatic notion of complementarity, we obtain sufficient structural power for constructive representation and correctness derivation of typical quantum informatic protocols.Comment: 26 pages, many pics; this third version has substantially more explanations than previous ones; Journal reference is of short 14 page version; Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
    • …
    corecore