1,101,728 research outputs found

    Cores of Countably Categorical Structures

    Full text link
    A relational structure is a core, if all its endomorphisms are embeddings. This notion is important for computational complexity classification of constraint satisfaction problems. It is a fundamental fact that every finite structure has a core, i.e., has an endomorphism such that the structure induced by its image is a core; moreover, the core is unique up to isomorphism. Weprove that every \omega -categorical structure has a core. Moreover, every \omega-categorical structure is homomorphically equivalent to a model-complete core, which is unique up to isomorphism, and which is finite or \omega -categorical. We discuss consequences for constraint satisfaction with \omega -categorical templates

    Model-Checking Problems as a Basis for Parameterized Intractability

    Full text link
    Most parameterized complexity classes are defined in terms of a parameterized version of the Boolean satisfiability problem (the so-called weighted satisfiability problem). For example, Downey and Fellow's W-hierarchy is of this form. But there are also classes, for example, the A-hierarchy, that are more naturally characterised in terms of model-checking problems for certain fragments of first-order logic. Downey, Fellows, and Regan were the first to establish a connection between the two formalisms by giving a characterisation of the W-hierarchy in terms of first-order model-checking problems. We improve their result and then prove a similar correspondence between weighted satisfiability and model-checking problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform characterisations of many of the most important parameterized complexity classes in both formalisms. Our results can be used to give new, simple proofs of some of the core results of structural parameterized complexity theory.Comment: Changes in since v2: Metadata update

    Simple Coalitional Games with Beliefs

    No full text
    We introduce coalitional games with beliefs (CGBs), a natural generalization of coalitional games to environments where agents possess private beliefs regarding the capabilities (or types) of others. We put forward a model to capture such agent-type uncertainty, and study coalitional stability in this setting. Specifically, we introduce a notion of the core for CGBs, both with and without coalition structures. For simple games without coalition structures, we then provide a characterization of the core that matches the one for the full information case, and use it to derive a polynomial-time algorithm to check core nonemptiness. In contrast, we demonstrate that in games with coalition structures allowing beliefs increases the computational complexity of stability-related problems. In doing so, we introduce and analyze weighted voting games with beliefs, which may be of independent interest. Finally, we discuss connections between our model and other classes of coalitional games

    Algorithmic patterns for H\mathcal{H}-matrices on many-core processors

    Get PDF
    In this work, we consider the reformulation of hierarchical (H\mathcal{H}) matrix algorithms for many-core processors with a model implementation on graphics processing units (GPUs). H\mathcal{H} matrices approximate specific dense matrices, e.g., from discretized integral equations or kernel ridge regression, leading to log-linear time complexity in dense matrix-vector products. The parallelization of H\mathcal{H} matrix operations on many-core processors is difficult due to the complex nature of the underlying algorithms. While previous algorithmic advances for many-core hardware focused on accelerating existing H\mathcal{H} matrix CPU implementations by many-core processors, we here aim at totally relying on that processor type. As main contribution, we introduce the necessary parallel algorithmic patterns allowing to map the full H\mathcal{H} matrix construction and the fast matrix-vector product to many-core hardware. Here, crucial ingredients are space filling curves, parallel tree traversal and batching of linear algebra operations. The resulting model GPU implementation hmglib is the, to the best of the authors knowledge, first entirely GPU-based Open Source H\mathcal{H} matrix library of this kind. We conclude this work by an in-depth performance analysis and a comparative performance study against a standard H\mathcal{H} matrix library, highlighting profound speedups of our many-core parallel approach

    High-lying single-particle modes, chaos, correlational entropy, and doubling phase transition

    Full text link
    Highly-excited single-particle states in nuclei are coupled with the excitations of a more complex character, first of all with collective phonon-like modes of the core. In the framework of the quasiparticle-phonon model we consider the structure of resulting complex configurations using the 1k17/21k_{17/2} orbital in 209^{209}Pb as an example. Although, on the level of one- and two-phonon admixtures, the fully chaotic GOE regime is not reached, the eigenstates of the model carry significant degree of complexity that can be quantified with the aid of correlational invariant entropy. With artificially enhanced particle-core coupling, the system undergoes the doubling phase transition with the quasiparticle strength concentrated in two repelling peaks. This phase transition is clearly detected by correlational entropy.Comment: 8 pages, 6 figure
    • …
    corecore