14 research outputs found

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Boundaries of quantum supremacy via random circuit sampling

    Full text link
    Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling, that is beyond the practical reach of modern supercomputers. We examine the constraints of the observed quantum runtime advantage in an analytical extrapolation to circuits with a larger number of qubits and gates. Due to the exponential decrease of the experimental fidelity with the number of qubits and gates, we demonstrate for current fidelities a theoretical classical runtime advantage for circuits beyond a depth of 100, while quantum runtimes for cross-entropy benchmarking limit the region of a quantum advantage to around 300 qubits. However, the quantum runtime advantage boundary grows exponentially with reduced error rates, and our work highlights the importance of continued progress along this line. Extrapolations of measured error rates suggest that the limiting circuit size for which a computationally feasible quantum runtime advantage in cross-entropy benchmarking can be achieved approximately coincides with expectations for early implementations of the surface code and other quantum error correction methods. Thus the boundaries of quantum supremacy via random circuit sampling may fortuitously coincide with the advent of scalable, error corrected quantum computing in the near term.Comment: 8 pages, 3 figure

    An introduction to graphical tensor notation for mechanistic interpretability

    Full text link
    Graphical tensor notation is a simple way of denoting linear operations on tensors, originating from physics. Modern deep learning consists almost entirely of operations on or between tensors, so easily understanding tensor operations is quite important for understanding these systems. This is especially true when attempting to reverse-engineer the algorithms learned by a neural network in order to understand its behavior: a field known as mechanistic interpretability. It's often easy to get confused about which operations are happening between tensors and lose sight of the overall structure, but graphical tensor notation makes it easier to parse things at a glance and see interesting equivalences. The first half of this document introduces the notation and applies it to some decompositions (SVD, CP, Tucker, and tensor network decompositions), while the second half applies it to some existing some foundational approaches for mechanistically understanding language models, loosely following ``A Mathematical Framework for Transformer Circuits'', then constructing an example ``induction head'' circuit in graphical tensor notation.Comment: 30 pages, 75 figure

    Classifying Complexity with the ZX-Calculus: Jones Polynomials and Potts Partition Functions

    Full text link
    The ZX-calculus is a graphical language which allows for reasoning about suitably represented tensor networks - namely ZX-diagrams - in terms of rewrite rules. Here, we focus on problems which amount to exactly computing a scalar encoded as a closed tensor network. In general, such problems are #P-hard. However, there are families of such problems which are known to be in P when the dimension is below a certain value. By expressing problem instances from these families as ZX-diagrams, we see that the easy instances belong to the stabilizer fragment of the ZX-calculus. Building on previous work on efficient simplification of qubit stabilizer diagrams, we present simplifying rewrites for the case of qutrits, which are of independent interest in the field of quantum circuit optimisation. Finally, we look at the specific examples of evaluating the Jones polynomial and of counting graph-colourings. Our exposition further champions the ZX-calculus as a suitable and unifying language for studying the complexity of a broad range of classical and quantum problems.Comment: QPL 2021 submissio

    Picturing counting reductions with the ZH-calculus

    Full text link
    Counting the solutions to Boolean formulae defines the problem #SAT, which is complete for the complexity class #P. We use the ZH-calculus, a universal and complete graphical language for linear maps which naturally encodes counting problems in terms of diagrams, to give graphical reductions from #SAT to several related counting problems. Some of these graphical reductions, like to #2SAT, are substantially simpler than known reductions via the matrix permanent. Additionally, our approach allows us to consider the case of counting solutions modulo an integer on equal footing. Finally, since the ZH-calculus was originally introduced to reason about quantum computing, we show that the problem of evaluating ZH-diagrams in the fragment corresponding to the Clifford+T gateset, is in FP#PFP^{\#P}. Our results show that graphical calculi represent an intuitive and useful framework for reasoning about counting problems

    A common algebraic description for probabilistic and quantum computations

    Get PDF
    AbstractThrough the study of gate arrays we develop a unified framework to deal with probabilistic and quantum computations, where the former is shown to be a natural special case of the latter. On this basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula which satisfies the conditions of the partial trace problem, and vice-versa; that is, given a tensor formula F of order n脳1 over a semiring S plus a positive integer k, deciding whether the kth partial trace of the matrix valSn,n(F路FT) fulfills a certain property. We use this to show that a certain promise version of the sum-free partial trace problem is complete for the class pr- BPP (promise BPP) for formulas over the semiring (Q+,+,路) of the positive rational numbers, for pr-BQP (promise BQP) in the case of formulas defined over the field (Q+,+,路), and if the promise is given up, then completeness for PP is shown, regardless whether tensor formulas over positive rationals or rationals in general are used. This suggests that the difference between probabilistic and quantum polytime computers may ultimately lie in the possibility, in the latter case, of having destructive interference between computations occurring in parallel. Moreover, by considering variants of this problem, classes like 鈯昉, NP, C=P, its complement co-C=P, the promise version of Valiant's class UP, its generalization promise SPP, and unique polytime US can be characterized by carrying the problem properties and the underlying semiring
    corecore